
Lectures on Quantum Field Theory.
Title:
Lectures on Quantum Field Theory.
Author:
Das, Ashok.
ISBN:
9789812832870
Personal Author:
Physical Description:
1 online resource (792 pages)
Contents:
Contents -- Preface -- 1 Relativistic equations -- 1.1 Introduction -- 1.2 Notations. -- 1.3 Klein-Gordon equation -- 1.3.1 Klein paradox -- 1.4 Dirac equation. -- 1.5 References -- 2 Solutions of the Dirac equation -- 2.1 Plane wave solutions -- 2.2 Normalization of the wave function -- 2.3 Spin of the Dirac particle. -- 2.4 Continuity equation. -- 2.5 Dirac's hole theory -- 2.6 Properties of the Dirac matrices -- 2.6.1 Fierz rearrangement -- 2.7 References -- 3 Properties of the Dirac equation -- 3.1 Lorentz transformations -- 3.2 Covariance of the Dirac equation -- 3.3 Transformation of bilinears. -- 3.4 Projection operators, completeness relation -- 3.5 Helicity -- 3.6 Massless Dirac particle -- 3.7 Chirality -- 3.8 Non-relativistic limit of the Dirac equation. -- 3.9 Electron in an external magnetic field -- 3.10 Foldy-Wouthuysen transformation. -- 3.11 Zitterbewegung -- 3.12 References -- 4 Representations of Lorentz and Poincaré groups -- 4.1 Symmetry algebras -- 4.1.1 Rotation -- 4.1.2 Translation -- 4.1.3 Lorentz transformation -- 4.1.4 Poincaré transformation -- 4.2 Representations of the Lorentz group -- 4.2.1 Similarity transformations and representations -- 4.3 Unitary representations of the Poincaré group -- 4.3.1 Massive representation -- 4.3.2 Massless representation -- 4.4 References -- 5 Free Klein-Gordon field theory -- 5.1 Introduction -- 5.2 Lagrangian density -- 5.3 Quantization. -- 5.4 Field decomposition. -- 5.5 Creation and annihilation operators. -- 5.6 Energy eigenstates -- 5.7 Physical meaning of energy eigenstates -- 5.8 Green's functions -- 5.9 Covariant commutation relations -- 5.10 References -- 6 Self-interacting scalar field theory -- 6.1 Nöther's theorem -- 6.1.1 Space-time translation -- 6.2 Self-interacting 4 theory. -- 6.3 Interaction picture and time evolution operator -- 6.4 S-matrix.
6.5 Normal ordered product and Wick's theorem -- 6.6 Time ordered products and Wick's theorem -- 6.7 Spectral representation and dispersion relation -- 6.8 References -- 7 Complex scalar field theory -- 7.1 Quantization. -- 7.2 Field decomposition. -- 7.3 Charge operator -- 7.4 Green's functions -- 7.5 Spontaneous symmetry breaking and the Goldstone theorem -- 7.6 Electromagnetic coupling. -- 7.7 References -- 8 Dirac field theory. -- 8.1 Pauli exclusion principle -- 8.2 Quantization of the Dirac field. -- 8.3 Field decomposition. -- 8.4 Charge operator -- 8.5 Green's functions -- 8.6 Covariant anti-commutation relations -- 8.7 Normal ordered and time ordered products -- 8.8 Massless Dirac fields -- 8.9 Yukawa interaction -- 8.10 Feynman diagrams -- 8.11 References -- 9 Maxwell field theory -- 9.1 Maxwell's equations. -- 9.2 Canonical quantization -- 9.3 Field decomposition. -- 9.4 Photon propagator -- 9.5 Quantum electrodynamics -- 9.6 Physical processes -- 9.7 Ward-Takahashi identity in QED -- 9.8 Covariant quantization of the Maxwell theory -- 9.9 References -- 10 Dirac method for constrained systems -- 10.1 Constrained systems -- 10.2 Dirac method and Dirac bracket. -- 10.3 Particle moving on a sphere -- 10.4 Relativistic particle -- 10.5 Dirac field theory -- 10.6 Maxwell field theory -- 10.7 References -- 11 Discrete symmetries -- 11.1 Parity. -- 11.1.1 Parity in quantum mechanics -- 11.1.2 Spin zero field -- 11.1.3 Photon field -- 11.1.4 Dirac field -- 11.2 Charge conjugation -- 11.2.1 Spin zero field -- 11.2.2 Dirac field -- 11.2.3 Majorana fermions -- 11.2.4 Eigenstates of charge conjugation -- 11.3 Time reversal -- 11.3.1 Spin zero field and Maxwell's theory -- 11.3.2 Dirac fields -- 11.3.3 Consequences of T invariance -- 11.3.4 Electric dipole moment of neutron -- 11.4 CPT theorem -- 11.4.1 Equality of mass for particles and antiparticles.
11.4.2 Electric charge for particles and antiparticles -- 11.4.3 Equality of lifetimes for particles and antiparticles -- 11.5 References -- 12 Yang-Mills theory -- 12.1 Non-Abelian gauge theories -- 12.2 Canonical quantization of Yang-Mills theory -- 12.3 Path integral quantization of gauge theories -- 12.4 Path integral quantization of tensor fields -- 12.5 References -- 13 BRST invariance and its consequences -- 13.1 BRST symmetry -- 13.2 Covariant quantization of Yang-Mills theory -- 13.3 Unitarity -- 13.4 Slavnov-Taylor identity -- 13.5 Feynman rules -- 13.6 Ghost free gauges -- 13.7 References -- 14 Higgs phenomenon and the standard model -- 14.1 Stückelberg formalism -- 14.2 Higgs phenomenon -- 14.3 The standard model. -- 14.3.1 Field content -- 14.3.2 Lagrangian density -- 14.3.3 Spontaneous symmetry breaking -- 14.4 References -- 15 Regularization of Feynman diagrams -- 15.1 Introduction -- 15.2 Loop expansion -- 15.3 Cut-off regularization -- 15.3.1 Calculation in the Yukawa theory -- 15.4 Pauli-Villars regularization -- 15.5 Dimensional regularization -- 15.5.1 Calculations in QED -- 15.6 References -- 16 Renormalization theory -- 16.1 Superficial degree of divergence -- 16.2 A brief history of renormalization -- 16.3 Schwinger-Dyson equation -- 16.4 BPHZ renormalization -- 16.5 Renormalization of gauge theories -- 16.6 Anomalous Ward identity -- 16.7 References -- 17 Renormalization group and equation -- 17.1 Gell-Mann-Low equation -- 17.2 Renormalization group -- 17.3 Renormalization group equation -- 17.4 Solving the renormalization group equation -- 17.5 Callan-Symanzik equation -- 17.6 References -- Index.
Abstract:
This book consists of the lectures for a two-semester course on quantum field theory, and as such is presented in a quite informal and personal manner. The course starts with relativistic one-particle systems, and develops the basics of quantum field theory with an analysis of the representations of the Poincaré group. Canonical quantization is carried out for scalar, fermion, Abelian and non-Abelian gauge theories. Covariant quantization of gauge theories is also carried out with a detailed description of the BRST symmetry. The Higgs phenomenon and the standard model of electroweak interactions are also developed systematically. Regularization and (BPHZ) renormalization of field theories as well as gauge theories are discussed in detail, leading to a derivation of the renormalization group equation. In addition, two chapters - one on the Dirac quantization of constrained systems and another on discrete symmetries - are included for completeness, although these are not covered in the two-semester course.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View