
Metaheuristics for Production Scheduling.
Title:
Metaheuristics for Production Scheduling.
Author:
Jarboui, Bassem.
ISBN:
9781118731567
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (449 pages)
Series:
Iste
Contents:
Cover -- Title Page -- Contents -- Introduction and Presentation -- Chapter 1. An Estimation of Distribution Algorithm for Solving Flow Shop Scheduling Problems with Sequence-dependent Family Setup Times -- 1.1. Introduction -- 1.2. Mathematical formulation -- 1.3. Estimation of distribution algorithms -- 1.3.1. Estimation of distribution algorithms proposed in the literature -- 1.4. The proposed estimation of distribution algorithm -- 1.4.1. Encoding scheme and initial population -- 1.4.2. Selection -- 1.4.3. Probability estimation -- 1.5. Iterated local search algorithm -- 1.6. Experimental results -- 1.7. Conclusion -- 1.8. Bibliography -- Chapter 2. Genetic Algorithms for Solving Flexible Job Shop Scheduling Problems -- 2.1. Introduction -- 2.2. Flexible job shop scheduling problems -- 2.3. Genetic algorithms for some related sub-problems -- 2.4. Genetic algorithms for the flexible job shop problem -- 2.4.1. Codings -- 2.4.2. Mutation operators -- 2.4.3. Crossover operators -- 2.5. Comparison of codings -- 2.6. Conclusion -- 2.7. Bibliography -- Chapter 3. A Hybrid GRASP-Differential Evolution Algorithm for Solving Flow Shop Scheduling Problems with No-Wait Constraints -- 3.1. Introduction -- 3.2. Overview of the literature -- 3.2.1. Single-solution metaheuristics -- 3.2.2. Population-based metaheuristics -- 3.2.3. Hybrid approaches -- 3.3. Description of the problem -- 3.4. GRASP -- 3.5. Differential evolution -- 3.6. Iterative local search -- 3.7. Overview of the NEW-GRASP-DE algorithm -- 3.7.1. Constructive phase -- 3.7.2. Improvement phase -- 3.8. Experimental results -- 3.8.1. Experimental results for the Reeves and Heller instances -- 3.8.2. Experimental results for the Taillard instances -- 3.9. Conclusion -- 3.10. Bibliography.
Chapter 4. A Comparison of Local Search Metaheuristics for a Hierarchical Flow Shop Optimization Problem with Time Lags -- 4.1. Introduction -- 4.2. Description of the problem -- 4.2.1. Flowshop with time lags -- 4.2.2. A bicriteria hierarchical flow shop problem -- 4.3. The proposed metaheuristics -- 4.3.1. A simulated annealing metaheuristics -- 4.3.2. The GRASP metaheuristics -- 4.4. Tests -- 4.4.1. Generated instances -- 4.4.2. Comparison of the results -- 4.5. Conclusion -- 4.6. Bibliography -- Chapter 5. Neutrality in Flow Shop Scheduling Problems: Landscape Structure and Local Search -- 5.1. Introduction -- 5.2. Neutrality in a combinatorial optimization problem -- 5.2.1. Landscape in a combinatorial optimization problem -- 5.2.2. Neutrality and landscape -- 5.3. Study of neutrality in the flow shop problem -- 5.3.1. Neutral degree -- 5.3.2. Structure of the neutral landscape -- 5.4. Local search exploiting neutrality to solve the flow shop problem -- 5.4.1. Neutrality-based iterated local search -- 5.4.2. NILS on the flow shop problem -- 5.5. Conclusion -- 5.6. Bibliography -- Chapter 6. Evolutionary Metaheuristic Based on Genetic Algorithm: Application to Hybrid Flow Shop Problem with Availability Constraints -- 6.1. Introduction -- 6.2. Overview of the literature -- 6.3. Overview of the problem and notations used -- 6.4. Mathematical formulations -- 6.4.1. First formulation (MILP1) -- 6.4.2. Second formulation (MILP2) -- 6.4.3. Third formulation (MILP3) -- 6.5. A genetic algorithm: model and methodology -- 6.5.1. Coding used for our algorithm -- 6.5.2. Generating the initial population -- 6.5.3. Selection operator -- 6.5.4. Crossover operator -- 6.5.5. Mutation operator -- 6.5.6. Insertion operator -- 6.5.7. Evaluation function: fitness -- 6.5.8. Stop criterion -- 6.6. Verification and validation of the genetic algorithm.
6.6.1. Description of benchmarks -- 6.6.2. Tests and results -- 6.7. Conclusion -- 6.8. Bibliography -- Chapter 7. Models and Methods in Graph Coloration for Various Production Problems -- 7.1. Introduction -- 7.2. Minimizing the makespan -- 7.2.1. Tabu algorithm -- 7.2.2. Hybrid genetic algorithm -- 7.2.3. Methods prior to GH -- 7.2.4. Extensions -- 7.3. Maximizing the number of completed tasks -- 7.3.1. Tabu algorithm -- 7.3.2. The ant colony algorithm -- 7.3.3. Extension of the problem -- 7.4. Precedence constraints -- 7.4.1. Tabu algorithm -- 7.4.2. Variable neighborhood search method -- 7.5. Incompatibility costs -- 7.5.1. Tabu algorithm -- 7.5.2. Adaptive memory method -- 7.5.3. Variations of the problem -- 7.6. Conclusion -- 7.7. Bibliography -- Chapter 8. Mathematical Programming and Heuristics for Scheduling Problems with Early and Tardy Penalties -- 8.1. Introduction -- 8.2. Properties and particular cases -- 8.3. Mathematical models -- 8.3.1. Linear models with precedence variables -- 8.3.2. Linear models with position variables -- 8.3.3. Linear models with time-indexed variables -- 8.3.4. Network flow models -- 8.3.5. Quadratic models -- 8.3.6. A comparative study -- 8.4. Heuristics -- 8.4.1. Properties -- 8.4.2. Evaluation -- 8.5. Metaheuristics -- 8.6. Conclusion -- 8.7. Acknowledgments -- 8.8. Bibliography -- Chapter 9. Metaheuristics for Biobjective Flow Shop Scheduling -- 9.1. Introduction -- 9.2. Metaheuristics for multiobjective combinatorial optimization -- 9.2.1. Main concepts -- 9.2.2. Some methods -- 9.2.3. Performance analysis -- 9.2.4. Software and implementation -- 9.3. Multiobjective flow shop scheduling problems -- 9.3.1. Flow shop problems -- 9.3.2. Permutation flow shop with due dates -- 9.3.3. Different objective functions -- 9.3.4. Sets of data -- 9.3.5. Analysis of correlations between objectives functions.
9.4. Application to the biobjective flow shop -- 9.4.1. Model -- 9.4.2. Solution methods -- 9.4.3. Experimental analysis -- 9.5. Conclusion -- 9.6. Bibliography -- Chapter 10. Pareto Solution Strategies for the Industrial Car Sequencing Problem -- 10.1. Introduction -- 10.2. Industrial car sequencing problem -- 10.3. Pareto strategies for solving the CSP -- 10.3.1. PMSMO -- 10.3.2. GISMOO -- 10.4. Numerical experiments -- 10.4.1. Test sets -- 10.4.2. Performance metrics -- 10.5. Results and discussion -- 10.6. Conclusion -- 10.7. Bibliography -- Chapter 11. Multi-Objective Metaheuristics for the Joint Scheduling of Production and Maintenance -- 11.1. Introduction -- 11.2. State of the art on the joint problem -- 11.3. Integrated modeling of the joint problem -- 11.4. Concepts of multi-objective optimization -- 11.5. The particle swarm optimization method -- 11.6. Implementation of MOPSO algorithms -- 11.6.1. Representation and construction of the solutions -- 11.6.2. Solution Evaluation -- 11.6.3. The proposed MOPSO algorithms -- 11.6.4. Updating the velocities and positions -- 11.6.5. Hybridization with local searches -- 11.7. Experimental results -- 11.7.1. Choice of test problems and configurations -- 11.7.2. Experiments and analysis of the results -- 11.8. Conclusion -- 11.9. Bibliography -- Chapter 12. Optimization via a Genetic Algorithm Parametrizing the AHP Method for Multicriteria Workshop Scheduling -- 12.1. Introduction -- 12.2. Methods for solving multicriteria scheduling -- 12.2.1. Optimization methods -- 12.2.2. Multicriteria decision aid methods -- 12.2.3. Choice of the multicriteria decision aid method -- 12.3. Presentation of the AHP method -- 12.3.1. Phase 1: configuration -- 12.3.2. Phase 2: exploitation -- 12.4. Evaluation of metaheuristics for the configuration of AHP -- 12.4.1. Local search methods.
12.4.2. Population-based methods -- 12.4.3. Advanced metaheuristics -- 12.5. Choice of metaheuristic -- 12.5.1. Justification of the choice of genetic algorithms -- 12.5.2. Genetic algorithms -- 12.6. AHP optimization by a genetic algorithm -- 12.6.1. Phase 0: configuration of the structure of the problem -- 12.6.2. Phase 1: preparation for automatic configuration -- 12.6.3. Phase 2: automatic configuration -- 12.6.4. Phase 3: preparation of the exploitation phase -- 12.7. Evaluation of G-AHP -- 12.7.1. Analysis of the behavior of G-AHP -- 12.7.2. Analysis of the results obtained by G-AHP -- 12.8. Conclusions -- 12.9. Bibliography -- Chapter 13. A Multicriteria Genetic Algorithm for the Resource-constrained Task Scheduling Problem -- 13.1. Introduction -- 13.2. Description and formulation of the problem -- 13.3. Literature review -- 13.3.1. Exact methods -- 13.3.2. Approximate methods -- 13.4. A multicriteria genetic algorithm for the MMSAP -- 13.4.1. Encoding variables -- 13.4.2. Genetic operators -- 13.4.3. Parameter settings -- 13.4.4. The GA -- 13.5. Experimental study -- 13.5.1. Diversification of the approximation set based on the diversity indicators -- 13.6. Conclusion -- 13.7. Bibliography -- Chapter 14. Metaheuristics for the Solution of Vehicle Routing Problems in a Dynamic Context -- 14.1. Introduction -- 14.2. Dynamic vehicle route management -- 14.2.1. The vehicle routing problem with time windows -- 14.3. Platform for the solution of the DVRPTW1 -- 14.3.1. Encoding a chromosome -- 14.4. Treating uncertainties in the orders -- 14.5. Treatment of traffic information -- 14.6. Conclusion -- 14.7. Bibliography -- Chapter 15. Combination of a Metaheuristic and a Simulation Model for the Scheduling of Resource-constrained -- 15.1. Knowledge model -- 15.1.1. Fixed resources and mobile resources -- 15.1.2. Modelling the activities in steps.
15.1.3. The problem to be solved.
Abstract:
This book describes the potentialities of metaheuristics for solving production scheduling problems and the relationship between these two fields. For the past several years, there has been an increasing interest in using metaheuristic methods to solve scheduling problems. The main reasons for this are that such problems are generally hard to solve to optimality, as well as the fact that metaheuristics provide very good solutions in a reasonable time. The first part of the book presents eight applications of metaheuristics for solving various mono-objective scheduling problems. The second part is itself split into two, the first section being devoted to five multi-objective problems to which metaheuristics are adapted, while the second tackles various transportation problems related to the organization of production systems. Many real-world applications are presented by the authors, making this an invaluable resource for researchers and students in engineering, economics, mathematics and computer science. Contents 1. An Estimation of Distribution Algorithm for Solving Flow Shop Scheduling Problems with Sequence-dependent Family Setup Times, Mansour Eddaly, Bassem Jarboui, Radhouan Bouabda, Patrick Siarry and Abdelwaheb Rebaï. 2. Genetic Algorithms for Solving Flexible Job Shop Scheduling Problems, Imed Kacem. 3. A Hybrid GRASP-Differential Evolution Algorithm for Solving Flow Shop Scheduling Problems with No-Wait Constraints, Hanen Akrout, Bassem Jarboui, Patrick Siarry and Abdelwaheb Rebaï. 4. A Comparison of Local Search Metaheuristics for a Hierarchical Flow Shop Optimization Problem with Time Lags, Emna Dhouib, Jacques Teghem, Daniel Tuyttens and Taïcir Loukil. 5. Neutrality in Flow Shop Scheduling Problems: Landscape Structure and Local Search, Marie-Eléonore Marmion. 6. Evolutionary Metaheuristic Based on Genetic Algorithm: Application to
Hybrid Flow Shop Problem with Availability Constraints, Nadia Chaaben, Racem Mellouli and Faouzi Masmoudi. 7. Models and Methods in Graph Coloration for Various Production Problems, Nicolas Zufferey. 8. Mathematical Programming and Heuristics for Scheduling Problems with Early and Tardy Penalties, Mustapha Ratli, Rachid Benmansour, Rita Macedo, Saïd Hanafi, Christophe Wilbaut. 9. Metaheuristics for Biobjective Flow Shop Scheduling, Matthieu Basseur and Arnaud Liefooghe. 10. Pareto Solution Strategies for the Industrial Car Sequencing Problem, Caroline Gagné, Arnaud Zinflou and Marc Gravel. 11. Multi-Objective Metaheuristics for the Joint Scheduling of Production and Maintenance, Ali Berrichi and Farouk Yalaoui. 12. Optimization via a Genetic Algorithm Parametrizing the AHP Method for Multicriteria Workshop Scheduling, Fouzia Ounnar, Patrick Pujo and Afef Denguir. 13. A Multicriteria Genetic Algorithm for the Resource-constrained Task Scheduling Problem, Olfa Dridi, Saoussen Krichen and Adel Guitouni. 14. Metaheuristics for the Solution of Vehicle Routing Problems in a Dynamic Context, Tienté Hsu, Gilles Gonçalves and Rémy Dupas. 15. Combination of a Metaheuristic and a Simulation Model for the Scheduling of Resource-constrained Transport Activities, Virginie André, Nathalie Grangeon and Sylvie Norre. 16. Vehicle Routing Problems with Scheduling Constraints, Rahma Lahyani, Frédéric Semet and Benoît Trouillet. 17. Metaheuristics for Job Shop Scheduling with Transportation, Qiao Zhang, Hervé Manier, Marie-Ange Manier. About the Authors Bassem Jarboui is Professor at the University of Sfax, Tunisia. Patrick Siarry is Professor at the Laboratoire Images, Signaux et Systèmes Intelligents (LISSI), University of Paris-Est Créteil, France. Jacques Teghem is Professor at the Universit.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View