Cover image for Compound Semiconductor Bulk Materials and Characterizations, Volume 2.
Compound Semiconductor Bulk Materials and Characterizations, Volume 2.
Title:
Compound Semiconductor Bulk Materials and Characterizations, Volume 2.
Author:
Oda, Osamu.
ISBN:
9789812835062
Personal Author:
Physical Description:
1 online resource (409 pages)
Contents:
CONTENTS -- PREFACE -- PART 4 OTHER COMPOUND SEMICONDUCTOR MATERIALS -- 19. III-V MIXED CRYSTALS -- 19.1 INTRODUCTION -- 19.2 PHYSICAL PROPERTIES -- 19.3 CRYSTAL GROWTH -- 19.3.1 In1-x GaxP -- 19.3.2 ln1-x GaxAs -- 19.3.3 In1-x GaxSb -- 19.3.4 InP l-xAsx -- 19.3.5 GaAs1-xP x -- 19.3.6 A1Ga1-x,Asx -- 19.3. 7 InSb1-xBix -- 19.3.8 Quaternary III-V Mixed Crystals -- 19.4 APPLICATIONS -- REFERENCES -- 20. NITRIDE AND OTHER III-V COMPOUNDS -- 20.1 INTRODUCTION -- 20.2 PHYSICAL PROPERTIES -- 20.3 CRYSTAL GROWTH -- 20.3.1 Boron Nitride -- 20.3.2 Aluminum Nitride -- (1) Melt growth -- (2) Solution growth -- (3) Vapor phase growth -- -Physical Vapor Transport (PVT) method -- - Other vapor phase growth methods -- (4) Metal Organic Chemical Vapor Deposition (MOCVD) -- (5) Hydride Vapor Phase Epitaxy (HVPE) -- (6) Other growth methods -- 20.3.3 Gallium Nitride -- (1) Melt growth -- (2) Solution growth -- - High Pressure Solution Growth (HP-SG) -- -Pressure-Controlled Solution Growth (PC-SG) method -- - Flux method -- - Ammonothermal method -- - Other solution growth methods -- (3) Vapor phase growth -- - Physical Vapor Transport (PVT) method -- - Reaction of Ga with NH3 -- - Reaction of Ga with activated nitrogen -- (4) Hydride Vapor Phase Epitaxy (HVPE) -- -Sapphire -- - NdGa03 (NGO) -- - GaAs -- -SiC -- - Si -- - GaN -- -Oxides -- (5) Others -- 20.3.4 Indium Nitride (InN) -- 20.3.5 Other III-V Compounds -- 20.4 CHARACTERIZATION -- 20.4.1 Purity -- (1) BN -- (2) AIN -- (3) GaN -- 20.4.2 Defects -- (1) Dislocations -- -BN -- -AIN -- - GaN -- (2) Structural defects -- -BN -- -AIN -- - GaN -- (3) Point defects -- -BN -- -AIN -- - GaN -- (i) Vacancies -- (ii) Divacancies -- (iii) Interstitials -- (iv) Antisite defects -- (v) Complex defects -- (4) Deep levels -- -AIN -- - GaN -- (i) n-type GaN -- (ii) p-type -- (iii) Semi-insulating (SI) -- (iv) Fe and Cr doping.

20.4.3 Electrical Properties -- (l)BN -- (2) AIN -- (3) GaN -- (4) InN -- 20.4.4 Optical Properties -- (1) BN -- (2) AIN -- (3) GaN -- 20.5 APPLICATIONS -- 20.5.1 Substrates for Devices -- (1) BN -- (2) AlN -- (3) GaN -- 20.5.2 Light Emitting Diodes (LEDs) -- (1) Red LEDs -- (2) Green LEDs -- (3) Blue and violet LEDs -- (4) White LEDs -- (5) Violet and ultraviolet (UV) LEDs -- 20.5.2 Lasers -- (1) Blue and violet LDs -- (2) Ultraviolet (UV) LDs -- (3) Green LDs -- 20.5.3 Detectors -- 20.5.4 Electronic devices -- 20.5.5 Field emitters -- REFERENCES -- 21. ZnO -- 21.1 INTRODUCTION -- 21.2 PHYSICAL PROPERTIES -- 21.3 CRYSTAL GROWTH -- 21.3.1 Melt Growth -- 21.3.2 Solution Growth -- (1) Flux method -- (2) Hydrothermal method -- 21.3.3 Vapor Phase Growth -- (I) Vapor reaction -- (2) Chemical Vapor Transport (CVT) -- (3) Chemical Vapor Deposition (CVD) -- 21.4 CHARACTERIZATION -- 21.4.1 Purity -- 21.4.2 Defects -- (1) Dislocations -- (2) Structural defects -- (3) Nonstoichiometry -- (4) Native defects -- 21.4.3 Electrical Properties -- 21.4.4 Optical Properties -- (1) Edge emission -- (2) Impurities -- (3) Native defects -- (4) Polishing -- (5) Polar surfaces -- 21.5 APPLICATIONS -- 21.5.1 Substrates -- 21.5.2 Scintillators -- 21.5.3 Light Emitting Diodes (LEDs) -- 21.5.4 Laser Diodes (LDs) -- 21.5.5 Photodiodes -- REFERENCES -- 22. MERCURY COMPOUNDS -- 22.1 INTRODUCTION -- 22.2 PHYSICAL PROPERTIES -- 22.2.1 Mercury Cadmium Telluride (MCT -- Hg1-xCdxTe) -- 22.2.2 Hgl2 -- 22.3 CRYSTAL GROWTH -- 22.3.1 Mercury Cadmium Telluride (MCT -- Hg1-xcdxTe) -- (1) Bridgman growth -- -Conventional and modified methods -- -Accelerated Crucible Rotation Technique (ACRT) -- (2) Zone Melting (ZM) and Zone Leveling (ZL) -- (3) Solution growth -- - Travelling Heater Method (THM) -- (4) Solid State Recrystallization (SSR) -- (5) Crystal growth of other materials.

22.3.2 Mercuric Iodide (Hgl2) -- (1) Starting material preparation -- (2) Melt growth -- (3) Solution growth -- (4) Physical Vapor Transport (PVT) -- - Static evaporation -- - Pulling method -- - Temperature Oscillation Method (TOM) -- -Forced Flux Method (FFM) -- - Space growth -- - Vaporization -- - Reduction of growth rate -- -Mercury halides -- (5) Chemical Vapor Transport (CVT) -- 22.4 CHARACTERIZATION -- 22.4.1 Purity -- (1) Hg1-xCdxTe (MCT) -- (2) HgI2 -- 22.4.2 Defects -- (1) Dislocations -- - Hg1-xCdxTe (MCT) -- -HgI2 -- (2) Structural defects -- - Hg1-xCdxTe (MCT) -- -HgI2 -- (3) Nonstoichiometry -- - Hg1-xCdxTe (MCT) -- - HgI2 -- (4) Native defects -- - Hg1-xCdxTe (MCT) -- -HgI1 -- 22.4.3 Electrical Properties -- (1) Hg1-xCdxTe (MCT) -- - Conductivity mechanism -- -Impurities -- -Annealing -- - Minority carrier lifetime -- (2) HgI2 -- 22.4.4 Optical Properties -- (1) Hg1-xCdxTe (MCT) -- (2) HgI2 -- 22.5 APPLICATIONS -- 22.5.1 Far Infrared Detectors -- 22.5.2 Radiation Detectors Using Hgl2 -- REFERENCES -- 23. SiC -- 23.1 INTRODUCTION -- 23.2 PHYSICAL PROPERTIES -- 23.3 CRYSTAL GROWTH -- 23.3.1 Crystal Growth Methods -- (1) Acheson method -- (2) Solution growth method -- (3) Sublimation method (Lely method) -- (4) Sublimation method (modified Lely method) -- - Growth of 6H- and 4H-SiC single crystals -- - Growth on various orientations -- -Improvement of growth conditions -- - Purity control -- -Enlargement of crystal diameter -- - Growth of 3C-SiC single crystals -- - Modelling and simulation -- (5) Other Methods -- - Chemical Vapor Deposition (CVD) -- -High Temperature CVD (HT-CVD) -- -Closed Space Vapor Transport (CSVT) -- Thermal Decomposition (Barikov Process) -- -Smart Cut -- 23.3.2 Control of Polytypes -- 23.3.3 Reduction of the Defect Densities -- (1) Micropipes (MPs) -- -Reduction by the modified Lely method.

Closing by epitaxial growth -- (2) Dislocations -- (3) Stacking faults (SFs) -- (4) Other defects -- 23.3.4 n-Type, p-Type and Semi-Insulating (SI) SiC Crystals -- (1) n-Type crystals -- - Phosphorus doping -- (2) p-Type crystals -- (3) Semi-Insulating (SI) crystals -- - V doping -- - Undoped semi-insulating -- 23.4 CHARACTERIZATION -- 24.4.1 Purity -- 23.4.2 Defects -- (1) Macrodefects and structural defects -- (2) Micropipes (MPs) -- (3) Dislocations -- (4) Stacking Faults (SFs) -- (5) Inclusions -- (6) Subgrain boundaries (low angle grain boundaries) -- (7) Other Dejects -- (8) Point defects -- (9) Deep levels -- - V-doped Semi-Insulating (SI) -- - Undoped Semi-Insulating (Sf) -- 23.4.3 Electrical Properties -- (1) Transport properties -- (2) p, n control -- (3) Semi-Insulating (Sl) properties -- 23.4.4 Optical Properties -- (1) Raman Spectrum -- (2) Photoluminescence (PL) -- - Exciton emission -- - Donor-Acceptor (DA) pair emission -- - Defect emission -- - Deep level emission -- - PL mapping -- 23.4.5 Effect of defects on device performance -- (1) Micropipes (MPs) -- (2) Dislocations -- (3) Stacking faults (SFs) -- 23.5 APPLICATIONS -- 23.5.1 Substrates for GaN Based Light Emitting Diodes (LEDs), Lasers Diodes (LDs) and Electronic Devices -- 23.5.2 Optical Devices and Sensors -- (I) Blue and other color LEDs -- (2) Ultraviolet (UV) photodetectors -- (3) Sensors -- (4) Radiation detectors -- 23.5.3 Electronic Devices -- (1) Diodes -- - Schottky Barrier Diodes (SBDs) -- -pn diodes -- (2) Power transistors -- -Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) -- -Junction FETs (JFETs)/Static Induction Transistors (SITs) -- -Bipolar transistors -- (3) High frequency devices -- REFERENCES -- 24. LEAD COMPOUNDS -- 24.1 INTRODUCTION -- 24.2 PHYSICAL PROPERTIES -- 24.3 CRYSTAL GROWTH -- 24.3.1 Melt Growth.

(1) Liquid Encapsulated Czochralski (LEC) method -- (2) Bridgman method and other melt growth methods -- 24.3.2 Solution Growth -- 24.3.3 Vapor Phase Growth -- (1) Physical Vapor Transport (PVT) method -- (2) Vapor-Liquid-Solid (VLS) /Vapor-Melt-Solid (VMS) method -- (3) Chemical Vapor Transport (CVT) method -- 20.3.4 Recrystallization -- 24.4 CHARACTERIZATION -- 24.4.1 Purity -- 24.4.1 Defects -- (1) Dislocations -- (2) Small angle grain boundaries (SAGBs) -- (3) Striations -- (4) Precipitation and inclusions -- (5) Stoichiometry -- (6) Native defects -- 24.4.2 Electrical Properties -- 24.4.3 Optical Properties -- 24.5 APPLICATIONS -- 24.5.1 IR Laser Diodes (IR-LDs) -- 24.5.2 Far Infrared Photodetectors -- 24.5.3 Thermoelectric Generators -- REFERENCES -- 25. CHALCOPYRITE COMPOUNDS -- 25.1 INTRODUCTION -- 25.2 PHYSICAL PROPERTIES -- 25.3 CRYSTAL GROWTH -- 25.3.1 Melt Growth -- (1) Gradient freezing, directional freezing and zone melting methods -- (2) Bridgman method -- (3) Liquid Encapsulated Czochralski (LEC) method -- 25.3.2 Solution Growth ( -- (1) Solution growth method -- (2) Traveling Heater Method (THM) -- 25.3.3 Vapor Phase Growth -- 25.3.4 Solid State Reaction (SSR) -- 25.3.5 Others -- 25.4 CHARACTERIZATION -- 25.4.1 Defects -- 25.4.2 Electrical Properties -- 25.4.3 Optical Properties -- 25.5 APPLICATIONS -- 25.5.1 Solar Cells -- 25.5.2 Short Wavelength Emitting Devices -- 25.5.3 Nonlinear Optical Devices -- 25.5.4 Narrow Range Optical Filters -- REFERENCES -- APPENDIX: RAW MATERIALS -- l. INTRODUCTION -- 2. PURIFICATION PROCESS -- 2.1 Electrolysis2 -- 2.2 Solvent Extraction3-5 -- 2.3 Ion Exchange6,7 -- 2.4 Vacuum Distillation8,9 -- 2.5 Zone Melting10,11 -- 3. ZINC -- 4. CADMIUM -- 5. MERCURY -- 6. GALLIUM -- 7. INDIUM -- 8. PHOSPHORUS -- 9. ARSENIC -- 10. ANTIMONY -- 11. BISMUTH -- 12. SELENIUM -- 13. TELLURIUM -- 14. BORIC OXIDE.

15. PYROL YTIC BORON NITRIDE (pBN).
Abstract:
This book is concerned with compound semiconductor bulk materials, and has been written for students, researchers and engineers in material science and device fabrication. It provides the elementary and intermediate knowledge of compound semiconductor bulk materials necessary for entry into this field. The first volume described the physical properties, crystal growth technologies, principles of crystal growth, various defects in crystals, characterization techniques and applications, and reviewed various III-V and II-V compound semiconductor materials. In this second volume, other materials are reviewed, including those that have recently received attention such as GaN, AlN, SiC and ZnO for optical and electronic devices.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: