
Structured Fluids : Polymers, Colloids, Surfactants.
Title:
Structured Fluids : Polymers, Colloids, Surfactants.
Author:
Witten, Thomas A.
ISBN:
9780191576928
Personal Author:
Physical Description:
1 online resource (231 pages)
Contents:
Contents -- 1 Overview -- 1.1 Introduction -- 1.2 A gallery of structured fluids -- 1.2.1 Self-organization -- 1.2.2 Rheology -- 1.2.3 Scaling -- 1.3 Types of structured fluids -- 1.3.1 Colloids -- 1.3.2 Aggregates -- 1.3.3 Polymers -- 1.3.4 Surfactant assemblies -- 1.3.5 Association -- 1.4 The chapters to follow -- References -- 2 Fundamentals -- 2.1 Statistical physics -- 2.1.1 Thermal equilibrium -- 2.1.2 Probability and work -- 2.1.3 Lattice gas -- 2.1.4 Approach to equilibrium -- 2.2 Magnitude of a liquid's response -- 2.3 Experimental probes of structured fluids -- 2.3.1 Macroscopic responses -- 2.3.2 Probes of spatial structure -- 2.3.3 Probes of atomic environment -- Solution to Problem 2.1 -- References -- 3 Polymer molecules -- 3.1 Types of polymers -- 3.1.1 Monomers -- 3.1.2 Architecture -- 3.1.3 Polymerization -- 3.2 Random-walk polymer -- 3.2.1 End-to-end probability -- 3.3 Interior structure -- 3.3.1 Scattering -- 3.4 Self-avoidance and self-interaction -- 3.4.1 Local and global avoidance -- 3.4.2 Estimating D -- 3.4.3 Self-interaction and solvent quality -- 3.4.4 Universal ratios -- 3.4.5 Polyelectrolytes -- Appendix A: Dilation symmetry -- Appendix B: Polymeric solvents and screening -- References -- 4 Polymer solutions -- 4.1 Dilute solutions -- 4.2 Semidilute solutions -- 4.2.1 Structure -- 4.2.2 Energy -- 4.2.3 Concentrated solutions and melts -- 4.3 Motion in a polymer solution -- 4.3.1 Brownian motion of a sphere -- 4.3.2 Intrinsic viscosity -- 4.3.3 Polymer in dilute solution: hydrodynamic opacity -- 4.3.4 Internal fluctuations -- 4.3.5 Hydrodynamic screening -- 4.3.6 Semidilute diffusion -- 4.3.7 Semidilute self-diffusion without entanglement -- 4.3.8 Motion with entanglements -- 4.3.9 Stress relaxation and viscosity -- 4.4 Conclusion -- Appendix A: Origin of the Oseen tensor.
Solution to Problem 4.5 (Deriving permeability) -- References -- 5 Colloids -- 5.1 Attractive forces: why colloids are sticky -- 5.1.1 Induced-dipole interactions -- 5.1.2 Solid bodies -- 5.1.3 Perturbation-Attraction Theorem -- 5.1.4 Depletion forces -- 5.2 Repulsive forces -- 5.2.1 Steric stabilization -- 5.2.2 Electrostatic stabilization -- 5.3 Organized states -- 5.3.1 Colloidal crystals -- 5.3.2 Lyotropic liquid crystals -- 5.3.3 Fractal aggregates -- 5.3.4 Anisotropic interactions -- 5.4 Colloidal motion -- 5.4.1 Electrophoresis -- 5.4.2 Soret effect -- Appendix A: Perturbation attraction in a square-gradient medium -- Appendix B: Colloidal aggregates -- References -- 6 Interfaces -- 6.1 Probes of an interface -- 6.2 Simple fluids -- 6.2.1 Interfacial energy -- 6.2.2 Contact angle -- 6.2.3 Wetting dynamics -- 6.2.4 Surface heterogeneity -- 6.2.5 Other interfacial flows -- 6.3 Solutes and interfacial tension -- 6.3.1 Fluid mixtures -- 6.4 Polyatomic solutes -- 6.4.1 Polymer adsorption -- 6.4.2 Concentration profile -- 6.4.3 Hard wall -- 6.4.4 Kinetics of adsorption -- 6.4.5 Surface interaction -- 6.4.6 Flow -- 6.5 Conclusion -- References -- 7 Surfactants -- 7.1 Introduction -- 7.2 Mixing principles -- 7.2.1 Positivity -- 7.2.2 Additivity -- 7.2.3 Ordering: like dissolves like -- 7.2.4 Reciprocity -- 7.2.5 Transitivity -- 7.2.6 Effect of permanent dipoles: water -- 7.2.7 Effect of charges: ionic separation -- 7.3 Surfactant molecules -- 7.4 Surfactants in solution: micelles -- 7.4.1 Open aggregation: wormlike micelles -- 7.4.2 Open aggregation: two-dimensional micelles -- 7.4.3 Aggregation kinetics -- 7.5 Micelle interaction -- 7.5.1 Energy of two-dimensional micelles -- 7.5.2 Energy to confine a fluctuating membrane -- 7.6 Mixing immiscible liquids: microemulsions -- 7.6.1 Interfacial tension -- 7.6.2 Emulsions and foams.
7.7 Amphiphilic polymers -- 7.7.1 Micelle size -- 7.7.2 Other copolymers -- 7.7.3 Polymeric amphiphiles in solution -- 7.8 Dynamics and rheology -- 7.8.1 Wormlike entanglement and relaxation -- 7.8.2 Rheology of lamellar solution -- 7.8.3 Shear-induced restructuring -- Appendix: Gauss-Bonnet Theorem -- References -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Y -- Z.
Abstract:
Over the last thirty years, the study of liquids containing polymers, surfactants, or colloidal particles has developed from a loose assembly of facts into a coherent discipline with substantial predictive power. These liquids expand our conception of what condensed matter can do. Such structured-fluid phenomena dominate the physical environment within living cells. This book teaches how to think of these fluids from a unified point of view showing the far-reaching effects ofthermal fluctuations in producing forces and motions. Keeping mathematics to a minimum, the book seeks the simplest explanations that account for the distinctive scaling properties of these fluids. An example is the growth of viscosity of a polymer solution as the cube of the molecular weight of theconstituent polymers. Another is the hydrodynamic radius of a colloidal aggregate, which remains comparable to its geometrical radius even though the density of particles in the aggregate becomes arbitrarily small. The book aims for a simplicity, unity and depth not found in previous treatments, and includes numerous figures, tables and problems. It will be an ideal textbook for teaching undergraduates in physical science how to understand soft matter, but will also be of interest toindustrial scientists, who want to gain a broader understanding of soft matter systems.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Added Author:
Electronic Access:
Click to View