
Biomaterials Surface Science.
Title:
Biomaterials Surface Science.
Author:
Taubert, Andreas.
ISBN:
9783527649631
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (615 pages)
Contents:
Biomaterials Surface Science -- Contents -- Preface -- List of Contributors -- Part I Polymer Surfaces -- 1 Proteins for Surface Structuring -- 1.1 Introduction -- 1.2 Structuring and Modification of Interfaces by Self-Assembling Proteins -- 1.2.1 Formation and Modification of Protein Structures at Liquid Interfaces -- 1.2.1.1 Silaffins -- 1.2.1.2 Hydrophobins -- 1.2.2 Formation and Modification of Protein Structures at Solid Interfaces -- 1.2.2.1 Silicateins -- 1.3 Structuring and Modification of Solid Surfaces via Printing of Biomolecules -- 1.3.1 Intaglio Printing Using Nanostructured Wrinkle Substrates -- 1.3.1.1 Wrinkling: Nanostructured Templates -- 1.3.1.2 Assembly of Bionanoparticles on Wrinkles -- 1.3.1.3 Intaglio Printing of Tobacco Mosaic Virus -- 1.3.2 Microcontact Printing for Bioinspired Surface Modification -- 1.3.2.1 Microcontact Printing onto Self-Assembled Monolayers -- 1.3.2.2 Microcontact Printing with Wrinkle Stamps -- 1.3.2.3 Microcontact Printing with Porous Stamps -- 1.3.2.4 Enhanced Microcontact Printing -- 1.4 Conclusion and Outlook -- References -- 2 Surface-Grafted Polymer Brushes -- 2.1 Introduction -- 2.2 Synthesis of Polymer Brushes -- 2.3 Stimuli-Responsive Polymer Brushes -- 2.4 Polyelectrolyte Brushes -- 2.5 Bio-Functionalized Polymer Brushes -- Acknowledgment -- References -- 3 Inhibiting Nonspecific Protein Adsorption: Mechanisms, Methods, and Materials -- 3.1 Introduction -- 3.2 Underlying Forces Responsible for Nonspecific Protein Adsorption -- 3.2.1 Protein Structure Effects on Adsorption and Adsorbed Film Properties -- 3.3 Poly(Ethylene Glycol) -- 3.4 Surface Forces Apparatus (SFA) -- 3.5 Applications of Poly(Ethylene Glycol) -- Summary -- References -- 4 Stimuli-Responsive Surfaces for Biomedical Applications -- 4.1 Introduction.
4.2 Surface Modification Methodologies: How to Render Substrates with Stimuli Responsiveness -- 4.2.1 Self-Assembled Monolayers -- 4.2.2 Thin Polymer Network Films -- 4.2.3 Grafting -- 4.2.4 Layer-by-Layer -- 4.3 Exploitable Stimuli and Model Smart Biomaterials -- 4.3.1 Physical Stimuli -- 4.3.1.1 Temperature -- 4.3.1.2 Light -- 4.3.2 Chemical Stimuli -- 4.3.2.1 pH -- 4.3.2.2 Ionic Strength -- 4.3.3 Biochemical Stimuli -- 4.3.3.1 Antigens -- 4.3.3.2 Enzymes -- 4.3.3.3 Glucose -- 4.3.4 Multiple-Responsive Surfaces -- 4.4 Biomedical Applications of Smart Surfaces -- 4.4.1 Smart Coatings for Tissue Engineering, Regenerative Medicine, and Drug Delivery Applications -- 4.4.2 Smart Biomineralization -- 4.4.3 Cell Sheet Engineering -- 4.5 Conclusions -- Acknowledgments -- References -- 5 Surface Modification of Polymeric Biomaterials -- 5.1 Introduction -- 5.2 Effect of Material Surfaces on Interactions with Biological Entities -- 5.2.1 Fundamental Aspects of Biological Responses to Biomaterials -- 5.2.2 Surface Properties of Polymeric Biomaterials -- 5.3 Surface Morphology of Polymeric Biomaterials -- 5.3.1 Physical Methods -- 5.3.1.1 Physical Adsorption -- 5.3.1.2 Surface Micro- and Nanopatterning -- 5.3.1.3 Langmuir-Blodgett (LB) Film Deposition -- 5.3.2 Chemical Methods -- 5.3.2.1 Ozone Treatment -- 5.3.2.2 Silanization -- 5.3.2.3 Fluorination -- 5.3.2.4 Wet Treatments -- 5.3.2.5 Flame Treatment -- 5.3.2.6 Incorporation of Functional Groups -- 5.3.3 Biological Methods -- 5.3.3.1 Protein-Enzyme Immobilization -- 5.3.4 Radiation Methods -- 5.3.4.1 Plasma Radiation -- 5.3.4.2 Microwave and Corona Discharge -- 5.3.4.3 Photoactivation by UV -- 5.3.4.4 Laser -- 5.3.4.5 Ion Beam -- 5.3.4.6 Gamma Irradiation -- 5.3.5 Improvement of Hydrophilicity -- 5.4 Surface Modifications to Improve Biocompatibility of Biomaterials -- 5.4.1 Adsorption of Proteins.
5.4.1.1 Patterning of the Surfaces -- 5.5 Surface Modifications to Improve Hemocompatibility of Biomaterials -- 5.5.1 Blood-Material Interaction -- 5.5.2 Factors Influencing Hemocompatibility -- 5.5.3 Modification Techniques for Hemocompatible Surfaces -- 5.6 Surface Modifications to Improve Antibacterial Properties of Biomaterials -- 5.6.1 Bacterial Infections Associated with Biomaterials -- 5.6.2 Bacteria and Material Interaction -- 5.6.3 Modification Techniques for Obtaining Antibacterial Surfaces -- 5.6.3.1 Surface Coatings with Antibiotics -- 5.6.3.2 Surface Coatings with Silver -- 5.6.3.3 Surface Modifications with Antibacterial Agents -- 5.7 Nanoparticles -- References -- 6 Polymer Vesicles on Surfaces -- 6.1 Introduction -- 6.2 Polymer Vesicles -- 6.2.1 Polymer Vesicles in Solution -- 6.2.1.1 Self-Assembly -- 6.2.1.2 Amphiphilic Copolymers -- 6.2.1.3 Preparation of Polymer Vesicles -- 6.2.1.4 Properties of Polymer Vesicles -- 6.2.2 Polymer Vesicles Tethered to Surfaces -- 6.2.2.1 Surface Preparation -- 6.2.2.2 Immobilization Procedures -- 6.2.3 Characterization of Vesicles, Surfaces, and Vesicles on Surfaces -- 6.2.4 Characterization of Vesicles in Solution -- 6.2.4.1 Scattering Methods -- 6.2.4.2 Microscopic Techniques -- 6.2.5 Solid Support Characterization -- 6.2.6 Vesicles on Surfaces -- 6.3 Applications of Polymer Membranes and Vesicles as Smart and Active Surfaces -- 6.3.1 Surface Functionalization of Polymeric Membranes and Vesicles -- 6.3.1.1 Insertion of Membrane Proteins in Polymeric Vesicles -- 6.3.1.2 Functionalization of Polymeric Membranes and Vesicles with Antibodies, Peptides, and Other Ligands -- 6.3.2 Polymer Membranes and Vesicles as (Bio)sensors -- 6.3.3 Polymer Vesicles as Nanoreactors for Diagnostics and Therapy -- 6.3.3.1 Encapsulation of Fluorescent Molecules -- 6.3.3.2 Encapsulation of Nanoparticles.
6.3.3.3 Polymer Vesicles as Nanoreactors -- 6.4 Current Limitations of Polymer Vesicles and Emerging Trends -- 6.4.1 Reproducibility and Stability of Polymer Vesicles -- 6.4.2 Loading Efficiency of Polymer Vesicles -- 6.4.3 Cytotoxicity of Polymer Vesicles -- 6.4.4 Next Generation of Polymer Vesicles -- 6.5 Conclusions -- Abbreviations and Symbols -- References -- Part II Hydrogel Surfaces -- 7 Protein-Engineered Hydrogels -- 7.1 Introduction to Protein Engineering for Materials Design -- 7.2 History and Development of Protein-Engineered Materials -- 7.3 Modular Design and Recombinant Synthesis Strategy -- 7.3.1 Module Design -- 7.3.2 Linker Design -- 7.3.3 Recombinant Protein Expression -- 7.4 Processing Protein-Engineered Materials -- 7.4.1 Cross-Linking Mechanisms -- 7.4.1.1 Effects of Cross-Link Density -- 7.4.1.2 Chemical Hydrogels -- 7.4.1.3 Physical Hydrogels -- 7.4.1.4 Self-Assembling Hydrogel Triggers -- 7.4.2 Protein-Engineered Hydrogel Processing Techniques -- 7.4.2.1 Thin Film Techniques -- 7.4.2.2 Bulk Protein Techniques -- 7.4.2.3 Surface Patterning Techniques -- 7.5 Conclusion -- References -- 8 Bioactive and Smart Hydrogel Surfaces -- 8.1 Introduction -- 8.2 Mimicking the Extracellular Matrix -- 8.2.1 Importance of Mimicking ECM Structure: From 2D to 3D Culture -- 8.2.2 Patterned Surfaces -- 8.2.2.1 Lithography -- 8.2.2.2 Micromolding -- 8.2.2.3 Nano-Microfluidics -- 8.2.2.4 Biopatterning -- 8.2.2.5 Response of Cells to Patterned Surfaces -- 8.3 Hydrogels: Why Are They So Special? -- 8.3.1 Chemical versus Physical Hydrogels -- 8.3.1.1 Chemical Cross-linking -- 8.3.1.2 Bioinspired Peptidic Motifs for Physical Cross-linking -- 8.3.2 Injectable Hydrogels -- 8.3.3 Natural versus Artificial Polymers -- 8.3.3.1 Natural Polymers -- 8.3.3.2 Artificial Polymers -- 8.4 Elastin-Like Recombinamers as Bioinspired Proteins.
8.4.1 ELR Chemical Hydrogels -- 8.4.2 ELR Physical Hydrogels -- 8.4.3 Adding Biofunctionality -- 8.4.4 Composites -- 8.5 Perspectives -- Acknowledgments -- References -- 9 Bioresponsive Surfaces and Stem Cell Niches -- 9.1 General Introduction -- 9.2 Stem Cell Niches -- 9.2.1 Hematopoietic Stem Cell Niche -- 9.2.2 Epithelial Stem Cell Niche -- 9.2.3 Neural Stem Cell Niche -- 9.3 Surfaces as Stem Cell Niches -- 9.3.1 Topography Effect on Stem Cell Behavior -- 9.3.2 Importance of Mechanical Properties on Stem Cells -- 9.3.3 Engineering Chemical Microenvironments for Stem Cells -- 9.4 Conclusions -- References -- Part III Hybrid & Inorganic Surfaces -- 10 Micro- and Nanopatterning of Biomaterial Surfaces -- 10.1 Introduction -- 10.2 Photolithography -- 10.3 Electron Beam Lithography -- 10.4 Focused Ion Beam -- 10.5 Soft Lithography -- 10.6 Dip-Pen Nanolithography -- 10.7 Nanoimprint Lithography -- 10.8 Sandblasting and Acid Etching -- 10.9 Laser-Induced Surface Patterning -- 10.10 Colloidal Lithography -- 10.11 Conclusions and Perspectives -- Acknowledgments -- References -- 11 Organic/Inorganic Hybrid Surfaces -- 11.1 Introduction -- 11.2 Calcium Carbonate Surfaces and Interfaces -- 11.3 Calcium Phosphate Surfaces and Interfaces -- 11.4 Silica Surfaces and Interfaces -- 11.5 Conclusion and Outlook -- Acknowledgments -- References -- 12 Bioactive Ceramic and Metallic Surfaces for Bone Engineering -- 12.1 Introduction -- 12.2 Ceramics for Bone Replacement and Regeneration -- 12.2.1 The Concept of Bioactivity in Ceramics: Genesis and Evolution -- 12.2.2 Bioactivity as a Surface Property: Surface Reactions in Glasses and Ceramics -- 12.2.3 In vitro Evaluation of Bioactivity -- 12.2.4 Bioactivity via Functionalization of Surfaces -- 12.3 Metallic Surfaces for Bone Replacement and Regeneration.
12.3.1 Physical Surface Modifications to Confer Functionality to Metallic Implants.
Abstract:
At the interface of biology, chemistry, and materials science, this book provides an overview of this vibrant research field, treating the seemingly distinct disciplines in a unified way by adopting the common viewpoint of surface science. The editors, themselves prolific researchers, have assembled here a team of top-notch international scientists who read like a "who's who" of biomaterials science and engineering. They cover topics ranging from micro- and nanostructuring for imparting functionality in a top-down manner to the bottom-up fabrication of gradient surfaces by self-assembly, from interfaces between biomaterials and living matter to smart, stimuli-responsive surfaces, and from cell and surface mechanics to the elucidation of cell-chip interactions in biomedical devices. As a result, the book explains the complex interplay of cell behavior and the physics and materials science of artificial devices. Of equal interest to young, ambitious scientists as well as to experienced researchers.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Genre:
Electronic Access:
Click to View