
Liquid-State Physical Chemistry : Fundamentals, Modeling, and Applications.
Title:
Liquid-State Physical Chemistry : Fundamentals, Modeling, and Applications.
Author:
de With, Gijsbertus.
ISBN:
9783527676781
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (558 pages)
Contents:
Cover -- Related Titles -- Title page -- Copyright page -- Contents -- Preface -- Acknowledgments -- List of Important Symbols and Abbreviations -- 1: Introduction -- 1.1 The Importance of Liquids -- 1.2 Solids, Gases, and Liquids -- 1.3 Outline and Approach -- 1.4 Notation -- References -- Further Reading -- 2: Basic Macroscopic and Microscopic Concepts: Thermodynamics, Classical, and Quantum Mechanics -- 2.1 Thermodynamics -- 2.1.1 The Four Laws -- 2.1.2 Quasi-Conservative and Dissipative Forces -- 2.1.3 Equation of State -- 2.1.4 Equilibrium -- 2.1.5 Auxiliary Functions -- 2.1.6 Some Derivatives and Their Relationships -- 2.1.7 Chemical Content -- 2.1.8 Chemical Equilibrium -- 2.2 Classical Mechanics -- 2.2.1 Generalized Coordinates -- 2.2.2 Hamilton's Principle and Lagrange's Equations -- 2.2.3 Conservation Laws -- 2.2.4 Hamilton's Equations -- 2.3 Quantum Concepts -- 2.3.1 Basics of Quantum Mechanics -- 2.3.2 The Particle-in-a-Box -- 2.3.3 The Harmonic Oscillator -- 2.3.4 The Rigid Rotator -- 2.4 Approximate Solutions -- 2.4.1 The Born-Oppenheimer Approximation -- 2.4.2 The Variation Principle -- 2.4.3 Perturbation Theory -- References -- Further Reading -- 3: Basic Energetics: Intermolecular Interactions -- 3.1 Preliminaries -- 3.2 Electrostatic Interaction -- 3.3 Induction Interaction -- 3.4 Dispersion Interaction -- 3.5 The total Interaction -- 3.6 Model Potentials -- 3.7 Refinements -- 3.7.1 Hydrogen Bonding -- 3.7.2 Three-Body Interactions -- 3.7.3 Accurate Empirical Potentials -- 3.8 The Virial Theorem -- References -- Further Reading -- 4: Describing Liquids: Phenomenological Behavior -- 4.1 Phase Behavior -- 4.2 Equations of State -- 4.3 Corresponding States -- 4.3.1 Extended Principle -- References -- Further Reading -- 5: The Transition from Microscopic to Macroscopic: Statistical Thermodynamics -- 5.1 Statistical Thermodynamics.
5.1.1 Some Concepts -- 5.1.2 Entropy and Partition Functions -- 5.1.3 Fluctuations -- 5.2 Perfect Gases -- 5.2.1 Single Particle -- 5.2.2 Many Particles -- 5.2.3 Pressure and Energy -- 5.3 The Semi-Classical Approximation -- 5.4 A Few General Aspects -- 5.5 Internal Contributions -- 5.5.1 Vibrations -- 5.5.2 Rotations -- 5.5.3 Electronic Transitions -- 5.6 Real Gases -- 5.6.1 Single Particle -- 5.6.2 Interacting Particles -- 5.6.3 The Virial Expansion: Canonical Method -- 5.6.4 The Virial Expansion: Grand Canonical Method -- 5.6.5 Critique and Some Further Remarks -- References -- Further Reading -- 6: Describing Liquids: Structure and Energetics -- 6.1 The Structure of Solids -- 6.2 The Meaning of Structure for Liquids -- 6.2.1 Distributions Functions -- 6.2.2 Two Asides -- 6.3 The Experimental Determination of g(r) -- 6.4 The Structure of Liquids -- 6.5 Energetics -- 6.6 The Potential of Mean Force -- References -- Further Reading -- 7: Modeling the Structure of Liquids: The Integral Equation Approach -- 7.1 The Vital Role of the Correlation Function -- 7.2 Integral Equations -- 7.2.1 The Yvon-Born-Green Equation -- 7.2.2 The Kirkwood Equation -- 7.2.3 The Ornstein-Zernike Equation -- 7.2.4 The Percus-Yevick Equation -- 7.2.5 The Hyper-Netted Chain Equation -- 7.2.6 The Mean Spherical Approximation -- 7.2.7 Comparison -- 7.3 Hard-Sphere Results -- 7.4 Perturbation Theory -- 7.4.1 The Gibbs-Bogoliubov Inequality -- 7.4.2 The Barker-Henderson Approach -- 7.4.3 The Weeks-Chandler-Andersen Approach -- 7.5 Molecular Fluids -- 7.6 Final Remarks -- References -- Further Reading -- 8: Modeling the Structure of Liquids: The Physical Model Approach -- 8.1 Preliminaries -- 8.2 Cell Models -- 8.3 Hole Models -- 8.3.1 The Basic Hole Model -- 8.3.2 An Extended Hole Model -- 8.4 Significant Liquid Structures -- 8.5 Scaled-Particle Theory -- References.
Further Reading -- 9: Modeling the Structure of Liquids: The Simulation Approach -- 9.1 Preliminaries -- 9.2 Molecular Dynamics -- 9.3 The Monte Carlo Method -- 9.4 An Example: Ammonia -- References -- Further Reading -- 10: Describing the Behavior of Liquids: Polar Liquids -- 10.1 Basic Aspects -- 10.2 Towards a Microscopic Interpretation -- 10.3 Dielectric Behavior of Gases -- 10.3.1 Estimating μ and α -- 10.4 Dielectric Behavior of Liquids -- 10.5 Water -- 10.5.1 Models of Water -- 10.5.2 The Structure of Liquid Water -- 10.5.3 Properties of Water -- References -- Further Reading -- 11: Mixing Liquids: Molecular Solutions -- 11.1 Basic Aspects -- 11.1.1 Partial and Molar Quantities -- 11.1.2 Perfect Solutions -- 11.2 Ideal and Real Solutions -- 11.2.1 Raoult's and Henry's Laws -- 11.2.2 Deviations -- 11.3 Colligative Properties -- 11.4 Ideal Behavior in Statistical Terms -- 11.5 The Regular Solution Model -- 11.5.1 The Activity Coefficient -- 11.5.2 Phase Separation and Vapor Pressure -- 11.5.3 The Nature of w and Beyond -- 11.6 A Slightly Different Approach -- 11.6.1 The Solubility Parameter Approach -- 11.6.2 The One- and Two-Fluid Model -- 11.7 The Activity Coefficient for Other Composition Measures -- 11.8 Empirical Improvements -- 11.9 Theoretical Improvements -- References -- Further Reading -- 12: Mixing Liquids: Ionic Solutions -- 12.1 Ions in Solution -- 12.1.1 Solubility -- 12.2 The Born Model and Some Extensions -- 12.3 Hydration Structure -- 12.3.1 Gas-Phase Hydration -- 12.3.2 Liquid-Phase Hydration -- 12.4 Strong and Weak Electrolytes -- 12.5 Debye-Hückel Theory -- 12.5.1 The Activity Coefficient and the Limiting Law -- 12.5.2 Extensions -- 12.6 Structure and Thermodynamics -- 12.6.1 The Correlation Function and Screening -- 12.6.2 Thermodynamic Potentials -- 12.7 Conductivity -- 12.7.1 Mobility and Diffusion.
12.8 Conductivity Continued -- 12.8.1 Association -- 12.9 Final Remarks -- References -- Further Reading -- 13: Mixing Liquids: Polymeric Solutions -- 13.1 Polymer Configurations -- 13.2 Real Chains in Solution -- 13.2.1 Temperature Effects -- 13.3 The Flory-Huggins Model -- 13.3.1 The Entropy -- 13.3.2 The Energy -- 13.3.3 The Helmholtz Energy -- 13.3.4 Phase Behavior -- 13.4 Solubility Theory -- 13.5 EoS Theories -- 13.5.1 A Simple Cell Model -- 13.5.2 The FOVE Theory -- 13.5.3 The LF Theory -- 13.5.4 The SS Theory -- 13.6 The SAFT Approach -- References -- Further Reading -- 14: Some Special Topics: Reactions in Solutions -- 14.1 Kinetics Basics -- 14.2 Transition State Theory -- 14.2.1 The Equilibrium Constant -- 14.2.2 Potential Energy Surfaces -- 14.2.3 The Activated Complex -- 14.3 Solvent Effects -- 14.4 Diffusion Control -- 14.5 Reaction Control -- 14.6 Neutral Molecules -- 14.7 Ionic Solutions -- 14.7.1 The Double-Sphere Model -- 14.7.2 The Single-Sphere Model -- 14.7.3 Influence of Ionic Strength -- 14.7.4 Influence of Permittivity -- 14.8 Final Remarks -- References -- Further Reading -- 15: Some Special Topics: Surfaces of Liquids and Solutions -- 15.1 Thermodynamics of Surfaces -- 15.2 One-Component Liquid Surfaces -- 15.3 Gradient Theory -- 15.4 Two-Component Liquid Surfaces -- 15.5 Statistics of Adsorption -- 15.6 Characteristic Adsorption Behavior -- 15.6.1 Amphiphilic Solutes -- 15.6.2 Hydrophobic Solutes -- 15.6.3 Hydrophilic Solutes -- 15.7 Final Remarks -- References -- Further Reading -- 16: Some Special Topics: Phase Transitions -- 16.1 Some General Considerations -- 16.2 Discontinuous Transitions -- 16.2.1 Evaporation -- 16.2.2 Melting -- 16.3 Continuous Transitions and the Critical Point -- 16.3.1 Limiting Behavior -- 16.3.2 Mean Field Theory: Continuous Transitions -- 16.3.3 Mean Field Theory: Discontinuous Transitions.
16.3.4 Mean Field Theory: Fluid Transitions -- 16.4 Scaling -- 16.4.1 Homogeneous Functions -- 16.4.2 Scaled Potentials -- 16.4.3 Scaling Lattices -- 16.5 Renormalization -- 16.6 Final Remarks -- References -- Further Reading -- Appendix A: Units, Physical Constants, and Conversion Factors -- Basic and Derived SI Units -- Physical Constants -- Conversion Factors for Non-SI Units -- Prefixes -- Greek Alphabet -- Standard Values -- Appendix B: Some Useful Mathematics -- B.1 Symbols and Conventions -- B.2 Partial Derivatives -- B.3 Composite, Implicit, and Homogeneous Functions -- B.4 Extremes and Lagrange Multipliers -- B.5 Legendre Transforms -- B.6 Matrices and Determinants -- B.7 Change of Variables -- B.8 Scalars, Vectors, and Tensors -- B.9 Tensor Analysis -- B.10 Calculus of Variations -- B.11 Gamma Function -- B.12 Dirac and Heaviside Function -- B.13 Laplace and Fourier Transforms -- B.14 Some Useful Integrals and Expansions -- Further Reading -- Appendix C: The Lattice Gas Model -- C.1 The Lattice Gas Model -- C.2 The Zeroth Approximation or Mean Field Solution -- C.3 The First Approximation or Quasi-Chemical Solution -- C.3.1 Pair Distributions -- C.3.2 The Helmholtz Energy -- C.3.3 Critical Mixing -- C.4 Final Remarks -- References -- Appendix D: Elements of Electrostatics -- D.1 Coulomb, Gauss, Poisson, and Laplace -- D.2 A Dielectric Sphere in a Dielectric Matrix -- D.3 A Dipole in a Spherical Cavity -- Further Reading -- Appendix E: Data -- References -- Appendix F: Numerical Answers to Selected Problems -- Index.
Abstract:
For many processes and applications in science and technology a basic knowledge of liquids and solutions is a must. Gaining a better understanding of the behavior and properties of pure liquids and solutions will help to improve many processes and to advance research in many different areas. This book provides a comprehensive, self-contained and integrated survey of this topic and is a must-have for many chemists, chemical engineers and material scientists, ranging from newcomers in the field to more experienced researchers. The author offers a clear, well-structured didactic approach and provides an overview of the most important types of liquids and solutions. Special topics include chemical reactions, surfaces and phase transitions. Suitable both for introductory as well as intermediate level as more advanced parts are clearly marked. Includes also problems and solutions.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Genre:
Electronic Access:
Click to View