
Principles of Environmental Physics : Plants, Animals, and the Atmosphere.
Title:
Principles of Environmental Physics : Plants, Animals, and the Atmosphere.
Author:
Monteith, John.
ISBN:
9780123869937
Personal Author:
Edition:
4th ed.
Physical Description:
1 online resource (423 pages)
Contents:
Half Title -- Title Page -- Copyright -- Contents -- Preface to the Fourth Edition -- Preface to the Third Edition -- Acknowledgments -- Symbols -- 1 The Scope of Environmental Physics -- 2 Properties of Gases and Liquids -- 2.1 Gases and Water Vapor -- 2.1.1 Pressure, Volume, and Temperature -- 2.1.2 The Hydrostatic Equation -- 2.1.3 The First Law of Thermodynamics, and Specific Heats -- 2.1.4 Latent Heat -- 2.1.5 Lapse Rate -- 2.1.6 Potential Temperature -- 2.1.7 Water Vapor and its Specification -- 2.1.7.1 Vapor Pressure -- 2.1.7.2 Dew-Point Temperature -- 2.1.7.3 Saturation Vapor Pressure Deficit -- 2.1.7.4 Mixing Ratio -- 2.1.7.5 Specific and Absolute Humidity -- 2.1.7.6 Virtual Temperature -- 2.1.7.7 Relative Humidity -- 2.1.7.8 Wet-Bulb Temperature -- 2.1.7.9 Summary of Methods for Specifying Water Vapor Amount -- 2.1.8 Other Gases -- 2.1.8.1 Specifying Trace Gas Concentrations -- 2.2 Liquid -- 2.2.1 Water Content and Potential -- 2.2.2 Liquid-Air Interfaces -- 2.3 Stable Isotopes -- 2.4 Problems -- 3 Transport of Heat, Mass, and Momentum -- 3.1 General Transfer Equation -- 3.2 Molecular Transfer Processes -- 3.2.1 Momentum and Viscosity -- 3.2.2 Heat and Thermal Conductivity -- 3.2.3 Mass Transfer and Diffusivity -- 3.3 Diffusion Coefficients -- 3.3.1 Resistances to Transfer -- 3.3.1.1 Alternative Units for Resistance and Conductance -- 3.4 Diffusion of Particles (Brownian Motion) -- 3.5 Problems -- 4 Transport of Radiant Energy -- 4.1 The Origin and Nature of Radiation -- 4.1.1 Absorption and Emission of Radiation -- 4.1.2 Full or Black Body Radiation -- 4.1.3 Wien's Law -- 4.1.4 Stefan's Law -- 4.1.5 Planck's Law -- 4.1.6 Quantum Unit -- 4.1.7 Radiative Exchange: Small Temperature Differences -- 4.2 Spatial Relations -- 4.2.1 Cosine Law for Emission and Absorption -- 4.2.2 Reflection -- 4.2.3 Radiance and Irradiance.
4.2.4 Attenuation of a Parallel Beam -- 4.3 Problems -- 5 Radiation Environment -- 5.1 Solar Radiation -- 5.1.1 Solar Constant -- 5.1.2 Sun-Earth Geometry -- 5.1.3 Spectral Quality -- 5.2 Attenuation of Solar Radiation in the Atmosphere -- 5.3 Solar Radiation at the Ground -- 5.3.1 Direct Radiation -- 5.3.2 Diffuse Radiation -- 5.3.3 Angular Distribution of Diffuse Radiation -- 5.3.4 Total (Global) Radiation -- 5.3.4.1 Spectrum of Total Solar Radiation -- 5.4 Terrestrial Radiation -- 5.4.1 Terrestrial Radiation from Cloudless Skies -- 5.4.2 Terrestrial Radiation from Cloudy Skies -- 5.5 Net Radiation -- 5.6 Problems -- 6 Microclimatology of Radiation (i) Radiative Properties of Natural Materials -- 6.1 Radiative Properties of Natural Materials -- 6.1.1 Water -- 6.1.1.1 Reflection -- 6.1.1.2 Transmission -- 6.1.2 Soils, Metals, and Glass -- 6.1.3 Leaves -- 6.1.4 Canopies of Vegetation -- 6.1.5 Animals -- 6.2 Problems -- 7 Microclimatology of Radiation 0pt (ii) Radiation Interception by Solid Structures -- 7.1 Geometric Principles -- 7.1.1 Direct Solar Radiation -- 7.1.1.1 Shape Factors -- 7.1.2 Diffuse Radiation -- 7.1.2.1 Shape Factors -- 7.2 Problems -- 8 Microclimatology of Radiation (iii) Interception by Plant Canopies and Animal Coats -- 8.1 Interception of Radiation by Plant Canopies -- 8.1.1 Black Leaves -- 8.1.1.1 Direct Radiation -- 8.1.1.2 Diffuse Radiation -- 8.1.2 Irradiance of Foliage -- 8.1.2.1 Practical Aspects -- 8.1.3 Leaves with Spectral Properties -- 8.1.3.1 Theory and Prediction -- 8.1.3.2 Absorbed and Intercepted Radiation -- 8.1.4 Daily Integration of Absorbed Radiation -- 8.1.5 Remote Sensing -- 8.2 Interception of Radiation by Animal Coats -- 8.3 Net Radiation -- 8.3.1 Net Radiation Measurement -- 8.4 Problems -- 9 Momentum Transfer -- 9.1 Boundary Layers -- 9.1.1 Skin Friction -- 9.1.2 Form Drag.
9.2 Momentum Transfer to Natural Surfaces -- 9.2.1 Drag on Leaves -- 9.2.2 Wind Profiles and Drag on Extensive Surfaces -- 9.2.3 Drag on Particles -- 9.3 Lodging and Windthrow -- 9.3.1 Lodging of Crops -- 9.3.2 Drag on Trees -- 9.3.2.1 Wind Forces on an Isolated Tree -- 9.3.2.2 Wind Forces on Trees in Forests -- 9.4 Problems -- 10 Heat Transfer -- 10.1 Convection -- 10.1.1 Non-Dimensional Groups -- 10.1.2 Forced Convection -- 10.1.3 Free Convection -- 10.1.4 Mixed Convection -- 10.1.5 Laminar and Turbulent Flow -- 10.1.6 Resistances to Convective Heat Transfer -- 10.1.6.1 Example -- 10.2 Measurements of Convection -- 10.2.1 Plane Surfaces -- 10.2.2 Leaves -- 10.2.2.1 Influence of Leaf Shape and Leaf Hairs -- 10.2.3 Cylinders and Spheres -- 10.2.3.1 Mammals -- 10.2.3.2 Birds -- 10.2.3.3 Insects -- 10.2.3.4 Conifer Leaves -- 10.3 Conduction -- 10.4 Insulation -- 10.4.1 Insulation of Animals -- 10.4.2 Tissue -- Coats-Mixed Regimes -- 10.5 Problems -- 11 Mass Transfer (i) Gases and Water Vapor -- 11.1 Non-Dimensional Groups -- 11.1.1 Forced Convection -- 11.1.2 Free Convection -- 11.2 Measurements of Mass Transfer -- 11.2.1 Plane Surfaces -- 11.2.2 Cylinders -- 11.2.3 Spheres -- 11.3 Ventilation -- 11.4 Mass Transfer Through Pores -- 11.4.1 Leaf Stomatal Resistances -- 11.4.2 Measurements of Diffusion Resistances -- 11.4.2.1 Leaves, Fungi, and Fruit -- 11.4.2.2 Insects and Eggs -- 11.4.3 Calculation of Diffusion Resistances -- 11.4.4 Mass Transfer and Pressure -- 11.5 Mass Transfer through Coats and Clothing -- 11.6 Problems -- 12 Mass Transfer (ii) Particles -- 12.1 Steady Motion -- 12.1.1 Sedimentation Velocity -- 12.2 Non-Steady Motion -- 12.3 Particle Deposition and Transport -- 12.3.1 Examples of Impaction -- 12.3.2 Factors Influencing Particle Retention -- 12.3.3 Influence of Deposition on the Diffusion of Particles in the Atmosphere.
12.3.4 Deposition of Hygroscopic Particles -- 12.3.5 Particle Deposition in the Lungs -- 12.3.5.1 Airway Characteristics -- 12.3.5.2 Deposition Mechanisms -- 12.4 Problems -- 13 Steady-State Heat Balance (i) Water Surfaces, Soil, and Vegetation -- 13.1 Heat Balance Equation -- 13.1.1 Convection and Long-Wave Radiation -- 13.2 Heat Balance of Thermometers -- 13.2.1 Dry-Bulb -- 13.2.2 Wet-Bulb -- 13.3 Heat Balance of Surfaces -- 13.3.1 Wet Surface -- 13.3.1.1 Adiabatic Systems -- 13.3.1.2 Non-Adiabatic Systems: Development of the Penman Equation -- 13.3.1.3 Isothermal Net Radiation -- 13.3.2 Evaporation from Open Water Surfaces -- 13.3.3 Dependence of Evaporation Rate on Weather -- 13.3.4 Potential Evaporation -- 13.3.5 Leaf Heat Balance: Introduction to the Penman-Monteith Equation -- 13.3.6 Dew and Frost -- 13.4 Developments From the Penman and Penman-Monteith Equations -- 13.4.1 Extension to Larger Scales: the Big-Leaf Model -- 13.4.2 Reference Evaporation -- 13.4.3 Specified Surface Humidity -- 13.4.4 Specified Surface Wet-Bulb Depression -- 13.4.5 Equilibrium Evaporation -- 13.4.6 Coupling Between Vegetation and the Atmosphere -- 13.5 Problems -- 14 Steady-State Heat Balance (ii) Animals -- 14.1 Heat Balance Components -- 14.1.1 Metabolism (M) -- 14.1.2 Units for Metabolism -- 14.1.3 Latent Heat (λE) -- 14.1.4 Convection (C) -- 14.1.5 Conduction (G) -- 14.1.6 Storage (S) -- 14.2 The Thermo-Neutral Diagram -- 14.3 Specification of the Environment-The Effective Temperature -- 14.3.1 Radiation Increment -- 14.4 Case Studies -- 14.4.1 Locust -- 14.4.2 Sheep -- 14.4.3 Man -- 14.4.4 Apparent Equivalent Temperature -- 14.4.5 Sweating Man -- 14.4.6 Heat Balance of Long Distance Runners -- 14.5 Problems -- 15 Transient Heat Balance -- 15.1 Time Constant -- 15.2 General Cases -- 15.2.1 Step Change -- 15.2.1.1 Examples -- 15.2.2 Ramp Change.
15.2.3 Harmonic Change -- 15.3 Heat Flow in Soil -- 15.3.1 Soil Thermal Properties -- 15.3.2 Formal Analysis of Heat Flow -- 15.3.3 Modification of Soil Thermal Regimes -- 15.4 Problems -- 16 Micrometeorology 0pt(i) Turbulent Transfer, Profiles, and Fluxes -- 16.1 Turbulent Transfer -- 16.1.1 Boundary Layer Development -- 16.1.2 Properties of Turbulence -- 16.1.3 Eddy Covariance -- 16.1.3.1 Reynolds Averaging -- 16.1.3.2 Eddy Transfer -- 16.2 Flux-Gradient Methods -- 16.2.1 Profiles -- 16.2.2 Momentum Transfer -- 16.2.2.1 Behavior of z0 and d with Vegetation Height and Structure -- 16.2.3 Aerodynamic Resistance -- 16.2.4 Fluxes of Heat, Water Vapor, and Mass -- 16.2.4.1 Profiles and Stability -- 16.3 Methods for Indirect Measurements of Flux Above Canopies -- 16.3.1 Aerodynamic Method -- 16.3.1.1 The Aerodynamic Method in Non-Neutral Stability -- 16.3.2 Bowen Ratio Method -- 16.4 Relative Merits of Methods of Flux Measurement -- 16.5 Turbulent Transfer in Canopies -- 16.6 Density Corrections to Flux Measurements -- 16.7 Problems -- 17 Micrometeorology 0pt(ii) Interpretation of Flux Measurements -- 17.1 Resistance Analogs -- 17.1.1 Canopy Resistance -- 17.1.2 The Additional Aerodynamic Resistance for Heat and Mass Transfer -- 17.1.3 ``Apparent'' and ``True'' Canopy Resistances -- 17.1.4 Canopy Resistances for Transfer of Pollutant Gases -- 17.2 Case Studies -- 17.2.1 Water Vapor and Transpiration -- 17.2.1.1 Evaporation Rates from Wet Canopies -- 17.2.1.2 Annual Variation of Evaporation and Transpiration -- 17.2.1.3 Evaporation from Forest Understorey -- 17.2.2 Carbon Dioxide and Growth -- 17.2.2.1 Carbon Budget of Agricultural Crops -- 17.2.2.2 Carbon Budget of Forests -- 17.2.3 Sulfur Dioxide and Other Pollutant Fluxes to Crops -- 17.3 Measurement and Modeling of Transport within Canopies -- 17.3.1 Transfer Processes in Canopies.
17.3.2 Synthesizing Profiles in Canopies.
Abstract:
Principles of Environmental Physics: Plants, Animals, and the Atmosphere, 4e, provides a basis for understanding the complex physical interactions of plants and animals with their natural environment. It is the essential reference to provide environmental and ecological scientists and researchers with the physical principles, analytic tools, and data analysis methods they need to solve problems. This book describes the principles by which radiative energy reaches the earth's surface and reviews the latest knowledge concerning the surface radiation budget. The processes of radiation, convection, conduction, evaporation, and carbon dioxide exchange are analyzed. Many applications of environmental physics principles are reviewed, including the roles of surface albedo and atmospheric aerosols in modifying microclimate and climate, remote sensing of vegetation properties, wind forces on trees and crops, dispersion of pathogens and aerosols, controls of evaporation from vegetation and soil (including implications of changing weather and climate), and interpretation of micrometeorological measurements of carbon dioxide and other trace gas fluxes. Presents a unique synthesis of micrometeorology and ecology in its widest sense Deals quantitatively with the impact of weather on living systems but also with the interactions between organisms and the atmosphere that are a central feature of life on earth Offers numerous worked examples and problems with solutions Provides many examples of laboratory and field measurements and their interpretation Includes an up-to-date bibliography and review of recent micrometeorological applications in forestry, ecology, hydrology, and agriculture.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Added Author:
Electronic Access:
Click to View