Cover image for Biomimetics : Advancing Nanobiomaterials and Tissue Engineering.
Biomimetics : Advancing Nanobiomaterials and Tissue Engineering.
Title:
Biomimetics : Advancing Nanobiomaterials and Tissue Engineering.
Author:
Ramalingam, Murugan.
ISBN:
9781118810460
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (384 pages)
Series:
Biomedical Science, Engineering, and Technology
Contents:
Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Acknowledgements -- 1 Biomimetic Polysaccharides and Derivatives for Cartilage Tissue Regeneration -- 1.1 Introduction -- 1.2 Strategies for Cartilage Tissue Engineering -- 1.3 Designing Scaffold for Cartilage Tissue Engineering -- 1.4 Natural Polysaccharides for Cartilage Tissue Engineering -- 1.4.1 Chitin and Chitosan (CS)-based Materials -- 1.4.2 HA-based Materials -- 1.4.3 Alginate-based Materials -- 1.4.4 Starch-based Materials -- 1.4.5 Cellulose-based Materials -- 1.5 Conclusions and Remarks on Prospects -- References -- 2 Biomimetic Synthesis of Self-Assembled Mineralized Collagen-Based Composites for Bone Tissue Engineering -- 2.1 Introduction -- 2.2 Hierarchical Assembly of Mineralized Collagen Fibrils in Natural Bone -- 2.2.1 Panorama of Natural Bone -- 2.2.1.1 Chemical Composition of Bone -- 2.2.1.2 Hierarchical Organization of Natural Human Bone -- 2.2.2 Self-Assembly of Mineralized Collagen Fibrils in Nature -- 2.2.2.1 Collagen and Collagen Fibrils Array -- 2.2.2.2 Structural Organization of Mineralized Collagen Fibrils -- 2.2.2.3 Examples of Mineralized Collagen Fibrils in Natural Tissues -- 2.3 Biomimetic Synthesis of Self-Assembled Mineralized Fibrils -- 2.3.1 In Vitro Self-Assembly of Mineralized Collagen Fibrils -- 2.3.2 In Vitro Self-Assembly of Mineralized Recombinant Collagen Fibrils -- 2.3.3 In Vitro Self-Assembly of Mineralized Silk Fibroin Fibrils -- 2.3.4 In Vitro Self-Assembly of Mineralized Peptide-Amphiphilic Nanofibers -- 2.4 Applications of Mineralized Collagen-based Composites for Bone Regeneration -- 2.4.1 Fabrication of Nano-HA/Collagen-based Composites -- 2.4.1.1 Three-Dimensional Biomimetic Bone Scaffolds: Nano-HA/Collagen/PLA Composite (nHAC/PLA).

2.4.1.2 Injectable Bone Cement: Nano-HA/Collagen/Calcium Sulfate Hemihydrate (nHAC/CSH) -- 2.4.2 Functional Improvements of Mineralized Collagen-based Composites -- 2.4.3 Examples of Animal Models and Clinical Applications -- 2.5 Concluding Remarks -- References -- 3 Biomimetic Mineralization of Hydrogel Biomaterials for Bone Tissue Engineering -- 3.1 Introduction -- 3.2 Incorporation of Inorganic Calcium Phosphate Nanoparticles into Hydrogels -- 3.2.1 Inorganic Nanoparticles -- 3.2.2 Hydrogel Composites Based on Natural Polymer Matrices -- 3.2.3 Hydrogel Composites Based on Synthetic Polymer Matrices -- 3.3 Biomimetic Mineralization in Calcium and/or Phosphate-Containing Solutions -- 3.3.1 Soaking in Solutions Containing Calcium and Phosphate Ions -- 3.3.2 In Situ Synthesis of Hydroxyapatite -- 3.4 Enzymatically-Induced Mineralization Using Alkaline Phosphatase (ALP) -- 3.4.1 ALP-Induced Hydrogel Mineralization for Fundamental Research -- 3.4.2 Enyzmatic Mineralization for Bone Regeneration Applications -- 3.4.3 ALP Entrapment -- 3.5 Enhancement of Hydrogel Mineralization Using Biomacromolecules -- 3.5.1 Systems to Test Mineralization-Inducing Potential of Biomacromolecules -- 3.5.2 Biomacromolecule-Enhanced Mineralization for Bone Regeneration Applications -- 3.6 Conclusions -- References -- 4 Biomimetic Nanofibrous Scaffolds for Bone Tissue Engineering Applications -- 4.1 Bone Tissue Engineering and Scaffold Design -- 4.1.1 Biomimetic Bone Tissue Engineering Scaffolds -- 4.2 Self-Assembled Nanofiber Scaffolds -- 4.2.1 Fabrication and Physical Properties -- 4.2.2 Biological Properties of PA Scaffolds -- 4.2.3 Conclusions -- 4.3 Electrospun Scaffolds -- 4.3.1 Fabrication and Physical Properties -- 4.3.2 Biological Behavior of Electrospun Scaffolds -- 4.3.3 Conclusions -- 4.4 Thermally Induced Phase Separation (TIPS) Scaffolds.

4.4.1 Fabrication and Physical Properties -- 4.4.2 Biological Behavior of TIPS Scaffolds -- 4.4.3 Conclusions -- 4.5 Overall Trends in Biomimetic Scaffold Design -- References -- 5 Bioactive Polymers and Nanobiomaterials Composites for Bone Tissue Engineering -- 5.1 Introduction -- 5.2 Design and Fabrication of Biomimetic 3D Polymer-Nanocomposites Scaffolds -- 5.2.1 Solvent Casting and Particulate Leaching -- 5.2.2 Melt Molding -- 5.2.3 Gas-Foaming Processes -- 5.2.4 Electrostatic Spinning -- 5.2.5 Microsphere Sintering -- 5.2.6 Rapid Prototyping -- 5.3 Nonbiodegradable Polymer and Nanocomposites -- 5.3.1 Polyethylene Nanocomposites -- 5.3.2 Polyamides Nanocomposites -- 5.3.3 Poly(ether ether ketone) (PEEK) Nanocomposites -- 5.3.4 Poly(methyl methacrylate) (PMMA) Nanocomposites -- 5.4 Biodegradable Polymer and Nanocomposites -- 5.4.1 Synthetic Biodegradable Polymers and Nanocomposites -- 5.4.1.1 Poly(Lactic Acid) Nanocomposites -- 5.4.1.2 Poly(e-caprolactone) (PCL) Nanocomposites -- 5.4.1.3 Polyglycolide and Poly(lactide-coglycolide) Nanocomposites -- 5.4.2 Natural Polysaccharide Nanocomposites -- 5.4.2.1 Chitin and Chitosan and Their Nanocomposites -- 5.4.2.2 Starch Nanocomposites -- 5.4.2.3 Cellulose Nanocomposites -- 5.5 Conclusions and Future Remarks -- References -- 6 Strategy for a Biomimetic Paradigm in Dental and Craniofacial Tissue Engineering -- 6.1 Introduction -- 6.2 Biomimetics: Definition and Historical Background -- 6.2.1 Definition -- 6.2.2 Concept of Duplicating Nature -- 6.2.3 Strategies to Achieve Biomimetic Engineering -- 6.2.3.1 Physical Properties -- 6.2.3.2 Specific Chemical Signals from Peptide Epitopes Contained in a Wide Variety of Extracelluar Matrix Molecules -- 6.2.3.3 The Hierarchal Nanoscale Topography of Microenvironmental Adhesive Sites.

6.3 Developmental Biology in Dental and Craniofacial Tissue Engineering: Biomimetics in Development and Growth (e.g. model of wound healing) -- 6.4 The Paradigm Shift in Tissue Engineering: Biomimetic Approaches to Stimulate Endogenous Repair and Regeneration -- 6.4.1 Harnessing Endogenous Repair via Mesenchymal Stem Cells -- 6.4.2 Inflammation, Angiogenesis and Tissue Repair -- 6.4.3 Biomimetic Model of Nature's Response to Injury? -- 6.5 Extracellular Matrix Nano-Biomimetics for Craniofacial Tissue Engineering -- 6.5.1 Nanotechnology for Biomimetic Substrates -- 6.5.2 From Macro to Nano: Dentin-Pulp Organ Perspective -- 6.5.3 Nanotechnology for Engineering Craniofacial Mineralized Collagenous Structures -- 6.6 Biomimetic Surfaces, Implications for Dental and Craniofacial Regeneration -- Biomaterial as Instructive Microenvironments -- 6.6.1 Biology of Osseointegration -- 6.6.2 Implant Surface Modification: Laser Micromachining and Biomimetic Coating -- 6.7 Angiogenesis, Vasculogenesis, and Inosculation for Life-Sustained Regenerative Therapy -- The Platform for Biomimicry in Dental and Craniofacial Tissue Engineering -- 6.7.1 Vascularization to Reach Biomimicry -- A Prerequisite for Life Sustained Regeneration -- 6.7.2 Patterns of Construct Vascularization -- 6.7.2.1 Angiogenesis -- 6.7.2.2 Vasculogenesis -- 6.7.2.3 Inosculation -- 6.7.3 Biomimicry to Reach Vascularization -- Simulating a Vascularizing Milieu -- 6.7.3.1 Scaffold Properties -- 6.7.3.2 Growth Factor Incorporation -- 6.7.3.3 Coculture Techniques -- 6.7.3.4 Creating Vascular Patterns -- 6.7.3.5 Back to Nature -- 6.8 Conclusion -- Acknowledgements -- References -- 7 Strategies to Prevent Bacterial Adhesion on Biomaterials -- 7.1 Introduction -- 7.2 Characteristics of Prokaryotic Cells -- 7.2.1 Architecture of Bacterial Cell -- 7.2.2 Bacterial Growth Behavior In Vitro.

7.2.3 Bacterial Adhesion and Biofilm Formation -- 7.2.4 Physicochemical Interactions between Bacteria and Surfaces -- 7.2.4.1 Factors Influencing Bacterial Adhesion -- 7.2.5 Synthetic Biomaterials with Microbial Resistance Property -- 7.2.5.1 Glass-Ceramics -- 7.2.5.2 HA-based Biocomposites with Bactericidal Property -- 7.2.5.3 Nanoparticles Treatment to Reduce Bacterial Infection -- 7.2.5.4 HA-based Magnetic Biocomposites -- 7.2.6 Influence of External Field on Bacterial Adhesion and Biofilm Growth -- 7.2.6.1 Electric Field -- 7.2.6.2 Magnetic Field -- 7.3 Summary -- Acknowledgement -- References -- 8 Nanostructured Selenium - A Novel Biologically-Inspired Material for Antibacterial Medical Device Applications -- 8.1 Bacterial Biofilm Infections on Implant Materials -- 8.2 Nanomaterials for Antibacterial Implant Applications -- 8.3 Selenium and Nanostructured Selenium -- 8.4 Selenium Nanoparticles for Antibacterial Applications -- 8.4.1 Antibacterial Properties of Selenium Compounds -- 8.4.2 Selenium Nanoparticles Inhibit Staphylococcus Aureus Growth -- 8.4.3 Selenium Nanoparticles for Preventing Biofilm Formation on Polycarbonate Medical Devices -- 8.4.4 Preventing Bacterial Growth on Paper Towels -- 8.5 Summary and Outlook -- References -- 9 Hydroxyapatite-Biodegradable Polymer Nanocomposite Microspheres Toward Injectable Cell Scaffold -- 9.1 Introduction -- 9.2 Pickering Emulsion -- 9.2.1 What is a Pickering Emulsion? -- 9.2.2 Pickering Emulsion Stabilized with Nanosized HAp Particles -- 9.3 Fabrication of HAp-Polymer Nanocomposite Microspheres by Pickering Emulsion Method -- 9.3.1 Fabrication of HAp-Commodity Polymer Nanocomposite Microspheres -- 9.3.2 Fabrication of HAp-Biodegradable Polymer Nanocomposite Microspheres -- 9.3.3 Fabrication of Multihollow HAp-Biodegradable Polymer Nanocomposite Microspheres.

9.4 Evaluation of Cell Adhesion Properties of HAp-Biodegradable Polymer Nanocomposite Microspheres.
Abstract:
This book compiles all aspects of biomimetics from fundamental principles to current technological advances and their future trends in the development of nanoscale biomaterials and tissue engineering. The scope of this book is principally confined to biologically-inspired design of materials and systems for the development of next generation nanobiomaterials and tissue engineering. The book addresses the state-of-the-art of research progress in the applications of the principles, processes, and techniques of biomimetics. The prospective outcomes of current advancements and challenges in biomimetic approaches are also presented.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: