
Semiconductor Optical Amplifiers.
Title:
Semiconductor Optical Amplifiers.
Author:
Dutta, Niloy K.
ISBN:
9789814489041
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (450 pages)
Contents:
Contents -- Preface -- 1. Introduction -- 1.1 Historical Developments -- 1.2 Semiconductor Materials -- 1.3 Operating Principles -- 1.4 Applications -- 1.5 Book Overview -- 1.6 Future Challenges -- References -- 2. Basic Concepts -- 2.1 Introduction -- 2.2 Optical Gain -- 2.2.1 Gain spectrum and bandwidth -- 2.2.2 Gain saturation -- 2.3 Dielectric Waveguide -- 2.4 Condition for Amplification -- 2.5 P-N Junction -- 2.6 Amplifier Characteristics -- 2.7 Multiquantum Well Amplifiers -- References -- 3. Recombination Mechanisms and Gain -- 3.1 Introduction -- 3.2 Radiative Recombination -- 3.2.1 Condition for gain -- 3.2.2 Gain calculation -- 3.2.3 Spontaneous emission rate -- 3.3 Non-radiative Recombination -- 3.3.1 Auger effect -- 3.3.2 Surface recombination -- 3.3.3 Recombination at defects -- 3.3.4 Carrier leakage over the heterobarrier -- 3.4 Quantum Well Amplifiers -- 3.4.1 Energy levels -- 3.4.2 Optical gain and Auger recombination -- 3.4.3 Strained quantum well amplifiers -- 3.5 Gain in Quantum Wire (QWR) and Quantum Dot (QD) Structures -- References -- 4. Epitaxial Growth and Amplifier Designs -- 4.1 Introduction -- 4.2 Material Systems -- 4.3 Epitaxial Growth Methods -- 4.3.1 Liquid phase epitaxy -- 4.3.2 Vapor phase epitaxy -- 4.3.3 Metal organic chemical vapor deposition -- 4.3.4 Molecular beam epitaxy -- 4.3.5 Chemical beam epitaxy -- 4.4 Strained Layer Epitaxy -- 4.5 Selective Area Growth -- 4.5.1 Model of SAG -- 4.5.2 Materials growth using SAG -- 4.6 Amplifier Designs -- 4.6.1 Leakage current -- 4.7 Growth of QWR and QD Materials -- References -- 5. Low Reflectivity Facet Designs -- 5.1 Introduction -- 5.2 Low Reflectivity Coatings -- 5.3 Buried Facet Amplifiers -- 5.4 Tilted Facet Amplifiers -- 5.5 Amplified Spontaneous Emission and Optical Gain -- References -- 6. Amplifier Rate Equations and Operating Characteristics.
6.1 Introduction -- 6.2 Amplifier Rate Equations for Pulse Propagation -- 6.3 Pulse Amplification -- 6.4 Multichannel Amplification -- 6.5 Amplifier Application in Optical Transmission Systems -- 6.5.1 In-line amplifiers -- 6.5.2 Optical pre-amplifier -- 6.5.3 Power amplifier -- 6.6 Amplifier Noise -- 6.6.1 Noise analysis for optical transmission -- 6.7 Gain Dynamics -- 6.7.1 Model of gain recovery -- 6.8 SOA with Carrier Reservoir -- References -- 7. Photonic Integrated Circuit Using Amplifiers -- 7.1 Introduction -- 7.2 Integrated Laser and Amplifier -- 7.3 Multichannel WDM Sources with Amplifiers -- 7.4 Spot Size Conversion (SSC) -- 7.5 Mach-Zehnder Interferometer -- 7.6 Photoreceiver -- References -- 8. Functional Properties and Applications -- 8.1 Introduction -- 8.2 Four-Wave Mixing -- 8.2.1 CW FWM results -- 8.2.1.1 FWM analysis -- 8.2.2 Pulsed FWM results -- 8.2.3 FWM bandwidth -- 8.3 Cross Gain Modulation -- 8.3.1 Rate equations for multiple pulse propagation -- 8.3.2 Bandwidth of cross gain modulation -- 8.4 Cross Phase Modulation -- 8.4.1 Mach-Zehnder interferometer -- 8.5 Wavelength Conversion -- 8.6 Optical Demultiplexing -- 8.6.1 FWM based scheme -- 8.6.2 Cross phase modulation based scheme -- 8.7 OTDM System Applications -- 8.7.1 Clock recovery -- 8.7.2 OTDM transmission -- 8.7.3 Gain-transparent SOA-Switch -- References -- 9. Optical Logic Operations -- 9.1 Introduction -- 9.2 Optical Logic XOR -- 9.2.1 XOR using SOA-MZI -- 9.2.1.1 Simulation -- 9.2.2 XOR using semiconductor optical amplifier-assisted fiber Sagnac gate -- 9.2.3 XOR using terahertz optical asymmetric demultiplexer (TOAD) -- 9.2.4 XOR using UNI gate -- 9.2.5 XOR optical gate based on cross-polarization modulation in SOA -- 9.2.6 XOR using FWM in semiconductor optical amplifier with return-to-zero phase-shift-keying (RZ-DPSK) modulated input -- 9.3 Optical Logic OR.
9.3.1 OR gate using gain saturation in an SOA -- 9.3.2 OR gate using a SOA and delayed interferometer (DI) -- 9.3.2.1 Experiment -- 9.3.2.2 Simulation -- 9.4 Optical Logic AND -- 9.4.1 Optical logic AND gate using a SOA based Mach-Zehnder interferometer -- 9.4.1.1 Experiment -- 9.4.1.2 Simulation -- 9.5 Optical Logic INVERT -- 9.6 Effect of Amplifier Noise -- 9.6.1 XOR operation -- 9.6.2 AND operation -- 9.6.3 OR operation -- 9.6.4 NAND operation -- 9.7 Optical Logic Using PSK Signals -- References -- 10. Optical Logic Circuits -- 10.1 Introduction -- 10.2 Adder -- 10.3 Parity Checker -- 10.4 All-optical Pseudo-Random Binary Sequence (PRBS) Generator -- 10.5 All-Optical Header Processor -- 10.5.1 Multi-output based on two pulse correlation principle -- 10.5.2 All-optical packet header processor based on cascaded SOA-MZIs -- 10.5.3 Ultrafast asynchronous multi-output all-optical header processor -- References -- 11. Quantum Dot Amplifiers -- 11.1 Introduction -- 11.2 Quantum Dot Materials Growth -- 11.3 Quantum Dot Amplifier Performance -- 11.4 Gain Dynamics -- 11.4.1 Gain dynamics - one state model -- 11.4.2 Gain dynamics - two state model -- 11.4.3 Gain recovery results -- 11.5 Functional Performance -- 11.5.1 Amplification -- 11.5.2 Cross gain modulation and wavelength conversion -- 11.5.3 Four-wave mixing -- 11.6 Optical Logic Performance -- 11.6.1 XOR, OR, AND optical logic operations -- 11.6.2 PRBS generator -- References -- 12. Reflective Semiconductor Optical Amplifiers (RSOA) -- 12.1 Introduction -- 12.2 RSOA Performance -- 12.3 Pulse Propagation Model and Gain Dynamics -- 12.4 RSOA Based Transmitter-Concept -- 12.5 Optical Transmission Applications -- References -- 13. Two-Photon Absorption in Amplifiers -- 13.1 Introduction -- 13.2 Two-Photon Absorption in Semiconductors -- 13.3 Phase Dynamics and Other TPA Studies.
13.3.1 Optical sampling -- 13.3.2 Clock recovery -- 13.3.3 Two-photon gain (TPG) -- 13.3.4 TPA in QD-SOA -- 13.4 Optical Logic Performance -- 13.4.1 Boolean logic (XOR, AND, NAND) operations -- 13.4.2 PRBS generation -- References -- 14. Semiconductor Optical Amplifiers as Broadband Sources -- 14.1 Introduction -- 14.2 High Power Broadband SOA Type Source -- 14.3 Wavelength Division Multiplexing (WDM) Applications -- 14.4 Optical Coherence Tomography Source -- 14.5 Sensor Applications -- References -- Index.
Abstract:
This invaluable look provides a comprehensive treatment of design and applications of semiconductor optical amplifiers (SOA). SOA is an important component for optical communication systems. It has applications as in-line amplifiers and as functional devices in evolving optical networks. The functional applications of SOAs were first studied in the early 1990's, since then the diversity and scope of such applications have been steadily growing. This is the second edition of a book on Semiconductor Optical Amplifiers first published in 2006 by the same authors. Several chapters and sections representing new developments in the chapters of the first edition have been added. The new chapters cover quantum dot semiconductor optical amplifiers (QD-SOA), reflective semiconductor optical amplifiers (RSOA) for passive optical network applications, two-photon absorption in amplifiers, and, applications of SOA as broadband sources. They represent advances in research, technology and commercial trends in the area of semiconductor optical amplifiers.Semiconductor Optical Amplifier is self-contained and unified in presentation. It can be used as an advanced text by graduate students and by practicing engineers. It is also suitable for non-experts who wish to have an overview of optical amplifiers. The treatments in the book are detailed enough to capture the interest of the curious reader and complete enough to provide the necessary background to explore the subject further.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Added Author:
Electronic Access:
Click to View