
Vibration of Piezoelectric Crystal Plates.
Title:
Vibration of Piezoelectric Crystal Plates.
Author:
Yang, Jiashi.
ISBN:
9789814449854
Personal Author:
Physical Description:
1 online resource (432 pages)
Contents:
Contents -- Preface -- Chapter 1: Theory of Piezoelectricity -- 1.1 Basic Equations -- 1.2 Free Vibration Eigenvalue Problem -- 1.2.1. Abstract formulation -- 1.2.2. Self-adjointness -- 1.2.3. Reality -- 1.2.4. Orthogonality -- 1.2.5. Positivity -- 1.2.6. Variational formulation -- 1.2.7. Perturbation based on variational formulation -- 1.2.8. Perturbation based on differential equations -- 1.3 Inertial Effect of a Mass Layer: Perturbation Integral -- 1.3.1. Governing equations -- 1.3.2. Perturbation analysis -- 1.4 Effect of Mass Layer Stiffness: Perturbation Integral -- 1.4.1. Governing equations -- 1.4.2. Perturbation analysis -- 1.4.3. Example -- 1.5 Frequency Perturbation Due to Contact with a Fluid -- 1.5.1. Governing equations -- 1.5.2. Perturbation analysis -- 1.6 Quartz and Langasite -- 1.7 Lithium Niobate and Lithium Tantalate -- 1.8 Polarized Ceramics and Crystals in Class 6mm -- Chapter 2: Thickness Modes in Plates: Elastic Analysis -- 2.1 Equations of Anisotropic Elasticity -- 2.1.1. General anisotropic crystals -- 2.1.2. Rotated Y-cut Quartz -- 2.2 Thickness Modes in a Quartz Plate -- 2.2.1. TS1 modes -- 2.2.2. Coupled TS3 and TT modes -- 2.3 Inertial Effect of a Mass Layer: Sauerbrey Equation -- 2.4 Inertial Effect of a Mass Layer: Perturbation -- 2.5 Inertial Effect of a Mass Layer: Differential Equation -- 2.6 Plate with Asymmetric Mass Layers -- 2.6.1. General anisotropic crystals -- 2.6.2. Monoclinic crystals -- 2.7 Plate in Contact with a Fluid: Differential Equation -- 2.7.1. Fields in the crystal plate -- 2.7.2. Fields in the fluid -- 2.7.3. Continuity conditions and frequency equation -- 2.7.4. Perturbation solution of the frequency equation -- 2.8 Plate in Contact with a Fluid: Perturbation -- 2.9 Plate with Particles -- 2.9.1. Frequency equation -- 2.9.2. Approximate frequency solution.
2.9.3. Discussion and numerical results -- 2.10 Plate with an Array of Rods in Extension -- 2.10.1. Crystal plate -- 2.10.2. Rod array -- 2.10.3. Plate-rod interaction -- 2.10.4. Equivalent mass layer -- 2.10.5. Approximate frequency solution -- 2.10.6. Special cases -- 2.11 Plate with an Array of Beams in Bending -- 2.11.1. Crystal plate -- 2.11.2. Beam array -- 2.11.3. Plate-beam interaction -- 2.11.4. Equivalent mass layer -- 2.11.5. Approximate frequency solution -- 2.11.6. Special case -- 2.12 Plate with Beams: Effect of Couple Stress -- 2.12.1. Equations and fields of the plate -- 2.12.2. Equations of the beams -- 2.12.3. Continuity conditions and frequency equation -- 2.12.4. Case of h = 0 and N = 0 -- 2.12.5. Case of h = 0 and N 0 -- 2.12.6. Case of h 0 and N = 0 -- 2.13 Plate with an Inhomogeneous Layer of Finite Thickness -- Chapter 3: Thickness Modes in Plates: Piezoelectric Analysis -- 3.1 Unelectroded Plate -- 3.2 Thickness Field Excitation -- 3.2.1. Free vibration -- 3.2.2. Forced vibration -- 3.3 Lateral Field Excitation -- 3.4 Plate with Separated Electrodes -- 3.5 Effect of Electrode Inertia -- 3.5.1. General analysis -- 3.5.2. Identical electrodes -- 3.6 Imperfectly Bonded Electrodes -- 3.6.1. General analysis -- 3.6.2. Identical electrodes -- 3.6.2.1. Identical electrodes in general -- 3.6.2.2. Large k' limit -- 3.6.2.3. Small k' limit -- 3.7 Effect of Electrode Shear Stiffness -- 3.7.1. General analysis -- 3.7.2. Special cases -- 3.7.2.1. Very thin electrodes without mechanical effects -- 3.7.2.2. Identical electrodes -- 3.7.2.3. Electrode inertia -- 3.7.2.4. Nonpiezoelectric plates -- 3.7.3. Numerical results -- 3.8 Plate in Contact with a Fluid under a Separated Electrode -- 3.8.1. Governing equations and fields -- 3.8.2. Free vibration -- 3.8.3. Forced vibration -- 3.8.4. Numerical results.
3.9 Plate in Contact with a Fluid: Lateral Field Excitation -- 3.9.1. Governing equations and fields -- 3.9.2. Free vibration -- 3.9.3. Forced vibration -- 3.9.4. Numerical results -- 3.10 Plate with Surface Load Described by Acoustic Impedance -- 3.10.1. Unelectroded plates -- 3.10.2. Electroded plates -- 3.11 Transient Thickness-shear Vibration -- 3.11.1. Governing equations -- 3.11.2. Free vibration solution -- 3.11.3. Forced vibration solution -- 3.11.4. Numerical results -- 3.11.4.1. Resonator startup -- 3.11.4.2. Driving voltage amplitude rise -- 3.11.4.3. Driving voltage amplitude pulse -- 3.11.4.4. Driving voltage frequency rise -- 3.11.4.5. Driving voltage frequency pulse -- Chapter 4: Shear-horizontal Waves in Unbounded Plates -- 4.1 Governing Equations -- 4.2 Face-shear Wave -- 4.3 Thickness-twist Wave -- 4.3.1. Antisymmetric waves -- 4.3.2. Symmetric waves -- 4.3.3. Dispersion curves -- 4.4 Symmetric Mass Layers -- 4.4.1. Antisymmetric waves -- 4.4.2. Symmetric waves -- 4.4.3. Dispersion curves -- 4.4.4. Approximate dispersion relation -- 4.5 Partial Mass Layers and Bechmann's Number -- 4.6 Asymmetric Mass Layers -- 4.6.1. Dispersion relation -- 4.6.2. Special case: one mass layer -- 4.7 Imperfectly Bonded Mass Layer -- 4.7.1. Dispersion relation -- 4.7.2. Approximate dispersion relation (small R) -- 4.7.3. Approximate dispersion relation (large k) -- 4.8 Mass Layer Stiffness -- 4.8.1. Dispersion relation -- 4.8.2. Numerical example -- 4.9 Thick Mass Layer -- 4.9.1. Dispersion relation -- 4.9.2. Long-wave approximation -- 4.9.3. Thin-film approximation -- 4.10 Plate on a Substrate -- 4.10.1. Dispersion relation -- 4.10.2. Numerical result -- 4.11 Plate in Contact with a Fluid -- 4.11.1. Dispersion relation -- 4.11.2. Special case: a plate without fluid -- 4.11.3. Low viscosity fluid -- 4.11.4. Long-wave approximation.
4.12 Effect of Piezoelectric Coupling -- 4.12.1. Governing equations -- 4.12.2. Propagating wave solution -- 4.12.3. Numerical results and discussion -- Chapter 5: Shear-horizontal Vibrations of Finite Plates -- 5.1 Plate with Tilted Edges -- 5.2 Unelectroded Plate -- 5.3 Fully Electroded Plate -- 5.4 Partially Electroded Plate -- 5.4.1. Fourier series solution -- 5.4.2. Numerical result -- 5.5 Plate with a Partial Mass Layer -- 5.6 Plate with Misaligned Electrodes -- 5.7 Plate with a Mass Layer Array -- 5.7.1. Governing equations and series solution -- 5.7.2. Effect of mass layer thickness -- 5.7.3. Effect of mass layer length -- 5.7.4. An array of four mass layers -- 5.8 Mesa Resonator -- 5.8.1. Governing equations -- 5.8.2. Fourier series solution -- 5.8.3. Boundary and continuity conditions -- 5.8.4. Numerical result -- 5.9 Filter -- 5.9.1. Governing equations -- 5.9.2. Fourier Series solution -- 5.9.3. Symmetric filter (L1 = L2, R1 = R2) -- 5.9.4. Asymmetric filter -- 5.10 Contoured Resonator -- 5.10.1. Governing equation -- 5.10.2. Solutions of the Helmholtz equation -- 5.10.2.1. Solutions of the angular Mathieu equation -- 5.10.2.2. Solutions of the radial Mathieu equation -- 5.10.3. Shear-horizontal modes -- 5.10.3.1. Antisymmetric modes -- 5.10.3.2. Symmetric modes -- 5.10.4. Numerical result and discussion -- 5.10.4.1. Thickness-shear modes -- 5.10.4.2. Thickness-twist modes -- 5.11 Plate with a Nonuniform Mass Layer -- 5.11.1. Fourier series solution -- 5.11.2. Numerical result -- 5.12 Plate with an Imperfectly Bonded Mass Layer -- 5.12.1. Fourier series solution -- 5.12.2. Numerical result -- 5.13 Frequency Spectra -- Chapter 6: Waves Propagating along Digonal Axis -- 6.1 Governing Equations -- 6.2 Wave Solution -- 6.3 Dispersion Curves -- 6.4 Long Wavelength Limit -- 6.5 Other Results -- 6.6 Approximate Equations for u1 and u2.
6.7 Straight-crested Waves of u1 and u2 -- Chapter 7: Vibration of Rectangular Plates -- 7.1 Approximate Equation for u1 -- 7.2 Unelectroded Plate -- 7.3 Fully Electroded Plate -- 7.4 Partially Electroded Plate -- 7.4.1. Series solution -- 7.4.2. Numerical result -- 7.5 Contoured Plate -- Chapter 8: Scalar Equation for Thickness Modes -- 8.1 Scalar Equation for AT-cut Quartz Plates -- 8.1.1. Unelectroded plate -- 8.1.2. Electroded plate -- 8.2 Rectangular Plate -- 8.3 Elliptical Plate -- 8.4 Circular Plate -- 8.4.1. Governing Equation -- 8.4.2. Solution -- 8.4.3. Numerical Result -- 8.5 Unbounded Plate with Parabolic Contour -- 8.5.1. Governing equation and solution -- 8.5.2. Numerical result -- 8.6 Unbounded Plate with Hyperbolic Contour -- 8.6.1. Governing equation -- 8.6.2. Analytical solution -- 8.6.3. Numerical result -- 8.7 Elliptical Plate with Parabolic Contour -- 8.7.1. Governing equation and solution -- 8.7.2. Numerical result -- 8.8 Scalar Equation for SC-cut Quartz Plates -- 8.8.1. Pure thickness waves -- 8.8.2. Unelectroded plate -- 8.8.3. Electroded plate -- 8.8.4. Canonical form -- 8.9 Optimal Electrode Shape and Size -- Appendix 1 Notation -- Appendix 2 Material Constants -- References -- Index.
Abstract:
The first contemporary text specializing on the dynamic problems of piezoelectric crystal plates for resonant acoustic wave devices (such as resonators, filters, and sensors) since H F Tiersten's publication in 1969. This book provides an up-to-date, systematic and comprehensive presentation of theoretical results on waves and vibrations in quartz crystal plates. It expounds on the application of the theories of elasticity and piezoelectricity in acoustic wave devices made from crystal plates through a coverage spanning from classical results on acoustic wave resonators, up to present-day applications in acoustic wave sensors.This text begins with the exposition of the simplest thickness modes and various frequency effects in them due to electrodes, mass loading, contact with fluids, air gaps, etc., and continues on to the more complicated shear-horizontal modes, as well as straight-crested modes varying along the digonal axis of rotated Y-cut quartz. Modes varying in both of the in-plane directions of crystal plates are also addressed.The analysis within are based on the three-dimensional theories of piezoelectricity and anisotropic elasticity with various approximations when needed. Both free vibration modes (stationary waves) and propagating waves are studied in this text. Forced vibration is also treated in a few places.This book is intended to serve as an informative reference to personnel who employ piezoelectric crystal plates in the course of their profession.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View