
Molten Salts Chemistry : From Lab to Applications.
Title:
Molten Salts Chemistry : From Lab to Applications.
Author:
Lantelme, Frederic.
ISBN:
9780124017221
Personal Author:
Physical Description:
1 online resource (592 pages)
Contents:
Front Cover -- Molten Salts Chemistry: From Lab to Applications -- Copyright -- Contents -- Contributors -- Preface -- Chapter 1: Modeling of Molten Salts -- 1.1. Introduction -- 1.2. Methods and Models -- 1.2.1. Molecular Dynamics Simulations -- 1.2.2. The Rigid Ion Model -- 1.2.3. The Polarizable Ion Model -- 1.2.4. Interaction Potential Parameterization -- 1.2.5. Calculated Quantities -- 1.3. Structure of Molten Salts -- 1.4. Dynamic Properties of Molten Salts -- 1.4.1. Viscosity -- 1.4.2. Thermal Conductivity -- 1.4.3. Diffusion Coefficients -- 1.4.4. Electrical Conductivity -- 1.5. Conclusion -- Acknowledgment -- References -- Chapter 2: Raman Spectroscopy and Pulsed Neutron Diffraction of Molten Salt Mixtures Containing Rare-Earth Trichlorides: ... -- 2.1. Introduction -- 2.2. Experimental -- 2.3. Results and Discussion -- 2.3.1. Raman Spectroscopy -- 2.3.2. Pulsed Neutron Diffraction -- 2.3.2.1. CsCl-NaCl System -- 2.3.2.2. CsCl-NaCl-LaCl3 System -- 2.3.2.3. CsCl-NaCl-YCl3 System -- 2.4. Conclusions -- References -- Chapter 3: In Situ Spectroscopy in Molten Fluoride Salts -- 3.1. Introduction -- 3.2. Experimental Techniques: Specificity, Limitation, Setup -- 3.2.1. Raman Spectroscopy -- 3.2.2. Nuclear Magnetic Resonance Spectroscopy -- 3.2.3. X-Ray Scattering and Extended X-Ray Absorption Fine Structure Spectroscopy -- 3.3. Spectroscopic Studies of Molten Fluorides -- 3.3.1. Alkali Fluorides -- 3.3.2. Alkaline-Earth Fluorides and Other Divalent Cation Fluorides -- 3.3.3. Fluoroaluminates -- 3.3.4. Rare Earth Fluorides -- 3.3.5. Zirconium and Thorium Fluorides -- 3.4. Conclusion -- References -- Chapter 4: Thermodynamic Calculations of Molten-Salt Reactor Fuel Systems -- 4.1. Introduction -- 4.2. Development of Thermodynamic Database -- 4.2.1. Thermodynamic Assessment of the LiF-KF System.
4.2.1.1. Step-Identification of LiF-KF Phase Diagram Shape -- 4.2.1.2. Step-Identification of Known Gibbs Energy Functions -- 4.2.1.3. Step-Calculation with Ideal Solution -- 4.2.1.4. Step-First Estimation of Gxs -- 4.2.1.5. Step-Final Assessment with DeltaSxs -- 4.2.2. Extrapolation of the LiF-NaF-KF Ternary System -- 4.3. Status of ITUs Salt Database -- 4.4. Binary Systems -- 4.4.1. LiF-NaF System -- 4.4.2. LiF-BeF2 System -- 4.4.2.1. NaF-BeF2 System -- 4.4.3. LiF-ThF4 Phase Diagram -- 4.4.4. The LiF-UF4 System -- 4.4.5. ThF4-UF4 System -- 4.4.6. LiF-PuF3 -- 4.4.7. NaF-PuF3 -- 4.4.8. BeF2-PuF3 System -- 4.5. Most Relevant Ternary Systems -- 4.5.1. LiF-NaF-BeF2 System -- 4.5.2. The LiF-ThF4-UF4 System -- 4.5.3. LiF-BeF2-ThF4 System -- 4.5.4. LiF-BeF2-PuF3 System -- 4.5.5. LiF-NaF-PuF3 System -- 4.5.6. NaF-BeF2-PuF3 System -- 4.5.7. LiF-CeF3-ThF4 System -- 4.6. Application of the Database -- 4.6.1. Example1 -- 4.6.2. Example2 -- 4.6.3. Example3 -- 4.6.4. Example4 -- 4.7. Summary -- References -- Chapter 5: Ionic Transport in Molten Salts -- 5.1. Introduction -- 5.2. Electric Conductance -- 5.2.1. Definition of Some Properties Concerning Electric Conductance -- 5.2.2. Experimental Method for Internal Mobility Measurement -- 5.2.3. The Chemla Effect and a Standard System for Mobility -- 5.2.4. Other Charge Symmetric Binary Cation Systems -- 5.2.4.1. Monovalent Binary Cation Systems with a Common Anion -- 5.2.4.2. Charge Symmetric Multivalent Binary Systems with a Common Anion -- 5.2.4.2.1. Divalent Cation System: (Ca, Ba)1/2Cl -- 5.2.4.2.2. Trivalent Cation Systems: (Y, La)1/3Cl and (Y, Dy)1/3Cl -- 5.2.5. Charge Asymmetric Binary Systems with a Common Anion -- 5.2.6. Calculated Internal Mobility and Self-Exchange Velocity (SEV) -- 5.2.7. Dynamic Dissociation Model for Mobilities -- 5.2.7.1. The Agitation Effect -- 5.2.7.2. The Free Space Effect.
5.2.7.3. The Tranquilization Effect -- 5.3. Concluding Remarks -- References -- Chapter 6: Salt Bath Thermal Treating and Nitriding -- 6.1. Introduction -- 6.2. General Aspects of Molten Salt Heat Treating -- 6.2.1. Characteristics of Treatment -- 6.2.2. Salt Containers -- 6.2.3. Heating Systems -- 6.2.4. Surface Coatings -- 6.3. Steel Nitriding -- 6.3.1. General Information -- 6.3.2. Nitriding of Pure Iron -- 6.3.3. A Real Case: Steel Nitriding -- 6.3.3.1. Carbon -- 6.3.3.2. Metallic Alloying Elements -- 6.3.3.3. Hardness Profile -- 6.3.3.3a. Processing Time -- 6.3.3.3b. Temperature -- 6.3.3.3c. Cooling Rate -- 6.3.3.3d. Alloying Elements -- 6.3.3.3.e. Metallurgical state of the substrate -- 6.3.4. Growing of Compound Layers -- 6.4. Salt Bath Nitriding -- 6.4.1. Thermodynamic Properties of Salt Mixtures -- 6.4.2. Aerated Baths -- 6.4.3. Electrode Potential -- 6.4.4. Electrochemical Nitriding -- 6.4.5. Composition of Molten Baths -- 6.5. Conclusion -- References -- Chapter 7: Catalysis in Molten Ionic Media -- 7.1. Introduction -- 7.1.1. Historical Development -- 7.1.2. Scope -- 7.1.3. The SO2 Oxidation Molten Salt Catalyst: Process and Research Challenges and Previews Surveys -- 7.2. Physicochemical Properties of the Catalyst Model System -- 7.2.1. Densities -- 7.2.2. Thermal Properties -- 7.2.3. Electrical Conductivities -- 7.3. Phase Diagrams of Molten Binary Systems of Relevance to the SO2 Oxidation Catalyst -- 7.4. Multi-instrumental Investigations and Complex Formation in Catalyst Model Melts -- 7.4.1. Formation of V(V) Complexes -- 7.4.2. Formation of V(IV) Complexes -- 7.5. Activity and Deactivation of SO2 Oxidation Vanadia-Pyrosulfate Bulk Melts and Supported Molten Salts: Formation of C ... -- 7.6. Vanadium Crystalline Compound Formation: A Summary of Structural and Vibrational Properties and Implications of Cata ...
7.7. In Situ Spectroscopy of Catalyst Models and Industrial Catalysts -- 7.8. Mechanism of the SO2 Oxidation Catalytic Reaction -- 7.9. Concluding Remarks -- References -- Chapter 8: The Ability of Molten Carbonate for Gas Cleaning of Biomass Gasification -- 8.1. Introduction -- 8.2. Gas-Cleaning Method -- 8.3. Desulfurization Using Molten Carbonate -- 8.3.1. Desulfurization Tests Under Simulated Gas Conditions -- 8.3.1.1. Relationship Between Desulfurization and Temperature -- 8.3.1.2. Relationship Between Desulfurization and Gas Composition -- 8.3.1.3. Countermeasures Against the Influence of CO2 on Desulfurization -- 8.3.2. Desulfurization Test Using Biomass Pyrolysis Gas -- 8.4. Dehalogenation Using Molten Carbonate -- 8.5. Tar Cracking -- 8.5.1. Cracking of Benzene -- 8.5.2. Tar Cracking of Biomass Pyrolysis Gas -- 8.6. Power Generation Test with a Molten-Carbonate Fuel Cell -- 8.7. Conclusions -- References -- Chapter 9: Inert Anode Development for High-Temperature Molten Salts -- 9.1. Introduction -- 9.1.1. Background -- 9.1.2. Definition of Inert Anode -- 9.1.3. Candidate Materials -- 9.1.4. Focus of the Chapter -- 9.2. Inert Anode Development in Molten Chlorides -- 9.2.1. Background -- 9.2.2. Thermodynamic Considerations -- 9.2.2.1. Reactions -- 9.2.2.2. Stability of Metals -- 9.2.2.3. Stability of Oxides/Compounds -- 9.2.2.4. Conductivity of Oxide/Compound Layer -- 9.3. Experimental Evaluations -- 9.3.1. Polarization Curves of Metals -- 9.3.2. Solubility Test Results -- 9.4. Carbon as an Inert Anode in the Absence of Oxygen in Molten Chlorides -- 9.5. Inert Anode Development in Molten Oxides -- 9.6. Inert Anode for Molten Carbonate Electrolysis -- 9.7. Perspectives -- References -- Chapter 10: Boron-Doped Diamond Electrodes in Molten Chloride Systems -- 10.1. Introduction -- 10.1.1. Molten Salts Containing Oxide Ions.
10.1.2. Inert Oxygen Evolution Electrode: A Boron-Doped Diamond Electrode -- 10.2. Stability of a Boron-Doped Diamond Electrode in Molten Chloride Systems -- 10.2.1. Thermal Stability of a Boron-Doped Diamond -- 10.2.2. Oxygen Gas Evolution on a Boron-Doped Diamond Electrode in Various Melts -- 10.2.3. Electrochemical Stability in a LiCl-KCl Eutectic Melt -- 10.2.4. Dependence of Electrochemical Stability on Melt Compositions -- 10.3. Thermodynamics of Oxygen Electrode Reaction on a Boron-Doped Diamond Electrode -- 10.3.1. Standard Formal Potential of O2/O2- -- 10.3.2. Change of Gibbs Free Energy, Entropy, Enthalpy -- 10.3.3. Activity Coefficient of Oxide Ion -- 10.4. Conclusions -- References -- Chapter 11: NF3 Production from Electrolysis in Molten Fluorides -- 11.1. Introduction -- 11.2. Anodic Behavior of Nickel and Nickel-Based Composite Electrodes in NH4F2HF at 100C for Electrolytic Production of NF3 -- 11.3. Anodic Behavior of Carbon Electrode in NH4FKFmHF (m=3 and 4) at 100C for Electrolytic Production of NF3 -- 11.4. New Development for Electrolytic Production of NF3 Using Boron-Doped Diamond (BDD) Anode -- 11.4.1. Anodic Behavior of BDD Anode in NH4F2HF at 100C for Electrolytic Production of NF3 -- 11.4.2. Effect of Current Density, NH4F Concentration and Ni2+ Additive on Current Efficiency for NF3 Formation in Electr ... -- 11.4.3. Effect of Boron Concentration in Boron-Doped Diamond Layer on Durability of BDD Anode and Current Efficiency for ... -- 11.4.4. Anodic Behavior of Steam-Activated BDD Electrode in a Molten NH4F2HF [61] -- 11.5. Conclusions -- Acknowledgments -- References -- Chapter 12: Corrosion in Molten Salts -- 12.1. Introduction -- 12.2. Corrosion in Molten Fluoride Salts -- 12.2.1. Thermodynamic Considerations -- 12.2.2. Impurity-Driven Corrosion -- 12.2.3. Thermal Gradient-Driven Corrosion.
12.2.4. Dissimilar Material Corrosion.
Abstract:
Molten salts and fused media provide the key properties and the theory of molten salts, as well as aspects of fused salts chemistry, helping you generate new ideas and applications for fused salts. Molten Salts Chemistry: From Lab to Applications examines how the electrical and thermal properties of molten salts, and generally low vapour pressure are well adapted to high temperature chemistry, enabling fast reaction rates. It also explains how their ability to dissolve many inorganic compounds such as oxides, nitrides, carbides and other salts make molten salts ideal as solvents in electrometallurgy, metal coating, treatment of by-products and energy conversion. This book also reviews newer applications of molten salts including materials for energy storage such as carbon nano-particles for efficient super capacitors, high capacity molten salt batteries and for heat transport and storage in solar plants. In addition, owing to their high thermal stability, they are considered as ideal candidates for the development of safer nuclear reactors and for the treatment of nuclear waste, especially to separate actinides from lanthanides by electrorefining. Explains the theory and properties of molten salts to help scientists understand these unique liquids Provides an ideal introduction to this expanding field Illustrated text with key real-life applications of molten salts in synthesis, energy, nuclear, and metal extraction.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Genre:
Added Author:
Electronic Access:
Click to View