Cover image for Mossbauer Spectroscopy : Applications in Chemistry, Biology, and Nanotechnology.
Mossbauer Spectroscopy : Applications in Chemistry, Biology, and Nanotechnology.
Title:
Mossbauer Spectroscopy : Applications in Chemistry, Biology, and Nanotechnology.
Author:
Sharma, Virender K.
ISBN:
9781118771907
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (657 pages)
Contents:
Mössbauer Spectroscopy: Applications in Chemistry, Biology, and Nanotechnology -- Contents -- Preface -- Contributors -- Part I: Instrumentation -- Chapter 1: In Situ Mössbauer Spectroscopy with Synchrotron Radiation on Thin Films -- 1.1 Introduction -- 1.2 Instrumentation -- 1.2.1 Nuclear Resonance Beamline ID18 at the ESRF -- 1.2.2 The UHV System for In Situ Nuclear Resonant Scattering Experiments at ID18 of the ESRF -- 1.3 Synchrotron Radiation-Based Mössbauer Techniques -- 1.3.1 Coherent Elastic Nuclear Resonant Scattering -- 1.3.2 Coherent Quasielastic Nuclear Resonant Scattering -- 1.3.3 Incoherent Inelastic Nuclear Resonant Scattering -- 1.4 Conclusions -- Acknowledgments -- References -- Chapter 2: Mössbauer Spectroscopy in Studying Electronic Spin and Valence States of Iron in the Earth's Lower Mantle -- 2.1 Introduction -- 2.2 Synchrotron Mössbauer Spectroscopy at High Pressures and Temperatures -- 2.3.1 Crystal Field Theory on the 3d Electronic States -- 2.3.2 Electronic Spin Transition of Fe2+ in Ferropericlase -- 2.3.3 Spin and Valence States of Iron in Silicate Perovskite -- 2.3.4 Spin and Valence States of Iron in Silicate Postperovskite -- 2.4 Conclusions -- Acknowledgments -- References -- Chapter 3: In-Beam Mössbauer Spectroscopy Using a Radioisotope Beam and a Neutron Capture Reaction -- 3.1 Introduction -- 3.2 57Mn (57Fe) Implantation Mössbauer Spectroscopy -- 3.2.1 In-Beam Mössbauer Spectrometer -- 3.2.2 Detector for 14.4 keV Mössbauer γ-Rays -- 3.2.3 Application to Materials Science-Ultratrace of Fe Atoms in Si and Dynamic Jumping -- 3.2.4 Application to Inorganic Chemistry -- 3.2.5 Development of Mössbauer γ-Ray Detector -- 3.3 Neutron In-Beam Mössbauer Spectroscopy -- 3.4 Summary -- References -- Part II: Radionuclides.

Chapter 4: Lanthanides (151Eu and 155Gd) Mössbauer Spectroscopic Study of Defect-Fluorite Oxides Coupled with New Defect Crystal Chemistry Model -- 4.1 Introduction -- 4.2 Defect Crystal Chemistry (DCC) Lattice Parameter Model -- 4.3 Lns-Mössbauer and Lattice Parameter Data of DF Oxides -- 4.3.1 151Eu-Mössbauer and Lattice Parameter Data of M-Eus (M4+ = Zr, Hf, Ce, U, and Th) -- 4.3.2 155Gd-Mössbauer and Lattice Parameter Data of Zr1 - yGdyO2 -y/2 -- 4.4 DCC Model Lattice Parameter and Lns-Mössbauer Data Analysis -- 4.4.1 DCC Model Lattice Parameter Data Analysis of Ce-Eu and Th-Eu -- 4.4.2 Quantitative BL(Eu3+ - O)-Composition (y) Curves in Zr-Eu and Hf-Eu -- 4.4.3 Model Extension Attempt from Macroscopic Lattice Parameter Side -- 4.5 Conclusions -- References -- Chapter 5: Mössbauer and Magnetic Study of Neptunyl(+1) Complexes -- 5.1 Introduction -- 5.2 237Np Mössbauer Spectroscopy -- 5.3 Magnetic Property of Neptunyl Monocation (NpO2+) -- 5.4 Mössbauer and Magnetic Study of Neptunyl(+1) Complexes -- 5.4.1 (NH4)[NpO2(O2CH)2] (1) -- 5.4.2 [NpO2(O2CCH2OH)(H2O)] (2) -- 5.4.3 [NpO2(O2CH)(H2O)] (3) -- 5.4.4 [(NpO2)2((O2C)2C6H4)(H2O)3] · H2O -- 5.5 Discussion -- 5.5.1 237Np Mössbauer Relaxation Spectra -- 5.5.2 Magnetic Susceptibility and Saturation Moment: Averaged Powder Magnetization for the Ground

7.2.2 238U Mössbauer and 235U NMR Measurements of UO2 in the Antiferromagnetic State -- 7.2.3 Determination of the Nuclear g-Factor in the First Excited State of 238U -- 7.3 Application of 238U Mössbauer Spectroscopy to Heavy Fermion Superconductors -- 7.3.1 Introduction of Uranium-Based Heavy Fermion Superconductors -- 7.3.2 Magnetic Ordering and Paramagnetic Relaxation in Heavy Fermion Superconductors -- 7.3.3 Summary of 238U Mössbauer Spectroscopy of Uranium-Based Heavy Fermion Superconductors -- 7.4 Application to Two-Dimensional (2D) Fermi Surface System of Uranium Dipnictides -- 7.4.1 Introduction of Uranium Dipnictides -- 7.4.2 Hyperfine Interactions Correlated with the Magnetic Structures in Uranium Dipnictides -- 7.4.3 Summary of 238U Mössbauer Spectroscopy of Uranium Dipnictides -- 7.5 Summary -- Acknowledgments -- References -- Part III: Spin Dynamics -- Chapter 8: Reversible Spin-State Switching Involving a Structural Change -- 8.1 Introduction -- 8.2 Three Assembled Structures of Fe(NCX)2(bpa)2 (X = S, Se) and Their Structural Change by Desorption of Propanol Molecules [23] -- 8.3 Occurrence of Spin-Crossover Phenomenon in Assembled Complexes Fe(NCX)2(bpa)2 (X = S, Se, BH3) by Enclathrating Guest Molecules [25-27] -- 8.4 Reversible Structural Change of Host Framework of Fe(NCS)2(bpp)2 2 (Benzene) Triggered by Sorption of Benzene Molecules [29] -- 8.5 Reversible Spin-State Switching Involving a Structural Change of Fe(NCX)2(bpp)2 2(Benzene) (X = Se, BH3) Triggered by Sorption of Benzene Molecules [30] -- 8.6 Conclusions -- References -- Chapter 9: Spin-Crossover and Related Phenomena Coupled with Spin, Photon, and Charge -- 9.1 Introduction -- 9.2 Photoinduced Spin-Crossover Phenomena -- 9.2.1 LIESST for Fe(II) Complexes -- 9.2.2 LIESST for Fe(III) Complexes -- 9.2.3 Recent Topics of Photoinduced Spin-Crossover Phenomena.

9.3 Charge Transfer Phase Transition -- 9.3.1 Thermally Induced Charge Transfer Phase Transition -- 9.3.2 Photoinduced Charge Transfer Phase Transition -- 9.4 Spin Equilibrium and Succeeding Phenomena -- 9.4.1 Rapid Spin Equilibrium in Solid State -- 9.4.2 Concerted Phenomenon Coupled with Spin Equilibrium and Valence Fluctuation -- References -- Chapter 10: Spin Crossover in Iron(III) Porphyrins Involving the Intermediate-Spin State -- 10.1 Introduction -- 10.2 Methodology to Obtain Pure Intermediate-Spin Complexes -- 10.2.1 Saddled Deformation -- 10.2.2 Ruffled Deformation -- 10.2.3 Core Modification -- 10.3 Spin Crossover Involving the Intermediate-Spin State -- 10.3.1 Spin Crossover Between S = 3/2 and S = 1/2 -- 10.3.2 Spin Crossover Between S = 3/2 and S = 5/2 -- 10.4 Spin-Crossover Triangle in Iron(III) Porphyrin Complexes -- 10.5 Conclusions -- Acknowledgments -- References -- Chapter 11: Tin(II) Lone Pair Stereoactivity: Influence on Structures and Properties and Mössbauer Spectroscopic Properties -- 11.1 Introduction -- 11.2 Experimental Aspects -- 11.2.1 Sample Preparation -- 11.3 Crystal Structures -- 11.3.1 The Fluorite-Type Structure: A Typically Ionic Structure -- 11.3.2 Tin(II) Fluoride: Covalent Bonding and Polymeric Structure -- 11.3.3 The α-PbSnF4 Structure: The Unexpected Combination of Ionic Bonding and Covalent Bonding -- 11.3.4 The PbClF-Type Structure: An Ionic Structure and a Tetragonal Distortion of the Fluorite Type -- 11.4 Tin Electronic Structure and Mössbauer Spectroscopy -- 11.4.1 Tin Electronic Structure, Bonding Type, and Coordination -- 11.4.2 Using Mössbauer Spectroscopy to Probe the Tin Electronic Structure and Bonding Mode -- 11.5 Application to the Structural Determination of α-SnF2 -- 11.5.1 History -- 11.5.2 Using 119Sn Mössbauer Spectroscopy to Determine that the Tin Positions Used by Bergerhoff Were Incorrect.

11.6 Application to the Structural Determination of the Highly Layered Structures of α-PbSnF4 and BaSnF4 -- 11.6.1 History -- 11.6.2 Unit Cell of MSnF4 and Relationships with the Fluorite-Type MF2 -- 11.6.3 Mössbauer Spectroscopy, Bonding Type, Crystal Symmetry, and Preferred Orientation -- 11.6.4 Combining All the Results: The α-PbSnF4 Structural Type -- 11.7 Application to the Structural Study of Disordered Phases -- 11.7.1 Disordered Fluoride Phases -- 11.7.2 Disordered Chloride Fluoride Phases -- 11.8 Lone Pair Stereoactivity and Material Properties -- 11.9 Conclusions -- Acknowledgments -- References -- Part IV: Biological Applications -- Chapter 12: Synchrotron Radiation-Based Nuclear Resonant Scattering: Applications to Bioinorganic Chemistry -- 12.1 Introduction -- 12.2 Technical Background -- 12.2.1 Theoretical Aspects of NFS -- 12.2.2 Theoretical Aspects of SRPAC -- 12.2.3 Experimental Aspects of NFS and SRPAC -- 12.3 Applications in Bioinorganic Chemistry -- 12.3.1 Nuclear Forward Scattering -- 12.3.2 SRPAC -- 12.4 Summary and Prospects -- Acknowledgments -- References -- Chapter 13: Mössbauer Spectroscopy in Biological and Biomedical Research -- 13.1 Introduction -- 13.2 Microorganisms-Related Studies -- 13.3 Plants -- 13.4 Enzymes -- 13.5 Hemoglobin -- 13.6 Ferritin and Hemosiderin -- 13.7 Tissues -- 13.8 Pharmaceutical Products -- 13.9 Conclusions -- Acknowledgments -- References -- Chapter 14: Controlled Spontaneous Decay of Mössbauer Nuclei (Theory and Experiments) -- 14.1 Introduction to the Problem of Controlled Spontaneous Gamma Decay -- 14.2 The Theory of Controlled Radiative Gamma Decay -- 14.2.1 General Consideration -- 14.3 Controlled Spontaneous Gamma Decay of Excited Nucleus in the System of Mutually Uncorrelated Modes of Electromagnetic Vacuum -- 14.3.1 Spontaneous Gamma Decay in the Case of Free Space.

14.3.2 Spontaneous Gamma Decay of Excited Nuclei in the Case of Screen Presence.
Abstract:
Providing a modern update of the field, Mossbauer Spectroscopy focuses on applications across a broad range of fields, including analysis of inorganic elements, nanoparticles, metalloenzymyes, biomolecules (including proteins), glass, coal, and iron. Ideal for a broad range of scientists, this one-stop reference presents advances gained in the field over past two decades, including a detailed theoretical description of Mossbauer spectroscopy, an extensive treatment of Mossbauer spectroscopy in applied areas, and challenges and future opportunities for the further development of this technique.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: