
Advanced Ceramics for Dentistry.
Title:
Advanced Ceramics for Dentistry.
Author:
Shen, James.
ISBN:
9780123948366
Personal Author:
Physical Description:
1 online resource (417 pages)
Contents:
Front Cover -- Advanced Ceramics for Dentistry -- Copyright Page -- Contents -- List of Contributors -- Preface -- 1 Introduction -- 2 Teeth -- 2.1 Introduction -- 2.2 Microstructure of Teeth -- 2.2.1 Enamel -- 2.2.2 Dentin -- 2.2.3 Cementum -- 2.2.4 Pulp -- 2.3 Optical Properties of Teeth -- 2.3.1 Color -- 2.3.2 Opacity and Translucency -- 2.3.3 Fluorescence -- 2.3.4 Opalescence -- 2.3.5 Metamerism -- 2.4 Mechanical Properties of Teeth -- 2.5 Common Defects and Damage -- Acknowledgments -- References -- 3 Dental Prostheses -- 3.1 Introduction of Prosthodontics and Dental Prostheses -- 3.2 Restoration of Tooth Defects -- 3.2.1 Direct Fillings -- 3.2.2 Inlays and Onlays -- 3.2.3 Laminate Veneers -- 3.2.4 Partial Crowns -- 3.2.5 Full Crowns -- 3.2.6 Post-and-core -- 3.3 Restoration of Partial Edentulism -- 3.3.1 Fixed Partial Dentures -- 3.3.2 Bonded Bridges -- 3.3.3 Removable Partial Dentures -- 3.3.4 Precise Attachment Dentures -- 3.4 Restoration of Complete Edentulism -- 3.4.1 Complete Dentures -- 3.4.2 Overdentures -- Acknowledgments -- References -- 4 Dental Implants -- 4.1 Principle Structure of Dental Implants -- 4.1.1 Classification of Implantation and Loading Mode -- 4.1.2 Classification by Time of Implantation After Tooth Loss -- 4.1.3 Indications -- 4.1.4 Indication Limitation -- 4.1.5 Contraindications -- 4.1.6 Advantages of Implants -- 4.1.7 Disadvantages of Implants -- 4.1.8 Implant Materials: Titanium vs. Zirconia -- 4.1.9 History of Ceramic Implants -- 4.1.10 Properties of Ceramics -- 4.1.11 Advantages of Ceramic Implants -- 4.1.12 Disadvantages of Ceramic Implants -- 4.2 Implants -- 4.2.1 Implant Types -- 4.2.2 Implant Forms -- 4.2.3 One-piece and Multi-part Systems -- 4.2.4 Survival Rates -- 4.3 Abutments -- 4.3.1 Abutment Design: Individually Produced vs. Prefabricated -- 4.3.2 Survival Rates of Ceramic Abutments.
4.4 Suprastructure -- 4.5 Clinical Procedures -- 4.5.1 Surgical Procedure -- 4.5.1.1 Pre-Surgical Planning -- 4.5.1.2 Intra-operative Behavior -- 4.5.1.3 Post-surgical Behavior and Education -- 4.5.2 Complications -- 4.5.2.1 Intra-operative Complications -- 4.5.2.2 Post-operative Complications -- 4.6 Fitting and Bite Force -- 4.6.1 Fitting of Ceramic Implants -- 4.6.2 Bite Force and Fracture Risk of Implants -- 4.7 Infection Management -- 4.8 Osseointegration -- References -- 5 Clinical Failures of Ceramic Dental Prostheses -- 5.1 Fractographic Analysis of Ceramics and Glasses -- 5.1.1 Tools and Equipment -- 5.1.2 Fracture Patterns and Origins -- 5.1.3 Fracture Surface Examination -- 5.2 Failures of Ceramic Dental Prostheses -- 5.2.1 Fracture Features -- 5.2.1.1 Cracking Initiated at the Margin -- 5.2.1.2 Cracking Initiated at Occlusal Contacts -- 5.2.1.3 Porcelain Chipping and Delamination -- 5.2.2 Analysis of Failure Origin -- 5.2.2.1 Failure Origins as Defects or Flaws -- 5.2.2.2 Hertzian Cone Cracks Under Compressive Stress -- 5.2.2.3 Cracks at Interface Under Tensile Stress -- 5.2.3 Flaws and Defects -- 5.2.3.1 Flaws/Defects and Failure Origins -- 5.2.3.2 Defects in Porcelain -- Gas Bubbles -- Inclusions -- Agglomerates -- Compositional Inhomogeneities -- 5.2.3.3 Defects in Ceramics -- Voids -- Porous Regions and Seams -- Agglomerates -- Compositional Inhomogeneities -- Large Grains -- 5.2.3.4 Classification of Flaws/Defects -- 5.2.4 Wear -- 5.2.5 Fractographic Case Studies -- 5.2.5.1 Zirconia/Porcelain Bi-layer All-ceramic Crown -- 5.2.5.2 Alumina/Porcelain Crown -- Acknowledgments -- References -- 6 Advanced Ceramics -- 6.1 Introduction -- 6.1.1 Classification -- 6.1.2 Historical Development -- 6.2 Hierarchical Structures -- 6.2.1 Atomic Bonding and Atomic Level Defects -- 6.2.2 Microstructure -- 6.3 Structure-Property Relations.
6.3.1 Intrinsic Physical and Chemical Properties of Individual Crystalline Grains -- 6.3.1.1 Optical Properties -- 6.3.1.2 Mechanical Strength -- 6.3.1.3 Chemical (Biological) and Thermal Stability -- 6.3.1.4 Functional Properties -- 6.3.2 Properties Determined by Microstructure -- 6.3.2.1 Properties Determined by Particle-packing Defects -- 6.3.2.2 Properties Determined by Grain Boundaries -- 6.3.2.3 Properties Determined by Porosity and Pore Size -- 6.3.2.4 Properties Determined by Grain Size -- 6.3.2.5 Properties Determined by Grain Morphology -- 6.3.2.6 Properties Determined by Phase Transformation -- 6.4 Optical Properties -- Acknowledgments -- References -- Further Reading -- 7 Advanced Ceramic Processes -- 7.1 Introduction -- 7.2 Powder Treatment -- 7.3 Shape-Forming Processes -- 7.3.1 Dry Shaping Methods -- 7.3.1.1 Uniaxial Pressing -- 7.3.1.2 Isostatic Pressing -- 7.3.1.3 Powder Granulation -- 7.3.2 Wet Shaping Methods -- 7.3.2.1 Colloidal Suspensions -- 7.3.2.2 Slip Casting and Related Methods -- 7.3.2.3 Direct Casting Methods -- 7.3.2.4 Tape Casting -- 7.3.3 Plastic Shaping Methods -- 7.3.3.1 Injection Molding -- 7.3.3.2 Extrusion -- 7.3.4 Solid Free-form Fabrication -- 7.4 Drying and Binder Removal -- 7.4.1 Drying of Porous Bodies -- 7.4.2 Binder Removal -- 7.5 Sintering -- 7.5.1 Fundamentals of Sintering: Thermodynamics and Kinetics -- 7.5.2 Classification of Sintering Methods -- 7.5.2.1 Pressure-less Sintering -- 7.5.2.2 Pressure-assisted Sintering -- 7.5.2.3 Hot Isostatic Pressing -- 7.5.2.4 Hot Pressing -- 7.5.2.5 Spark Plasma Sintering -- 7.5.3 Influence of Sintering Atmosphere -- References -- 8 Microstructure Characterization of Advanced Ceramics -- 8.1 Surface Topography -- 8.2 Porosity and Pore Structure -- 8.3 Microscopic Defects -- 8.4 Interfacial Bonding Structures -- References.
9 Mechanical Properties and Reliability of Advanced Ceramics -- 9.1 Introduction -- 9.2 Fracture Mechanics -- 9.2.1 Damage Mechanisms -- 9.2.2 Basic Fracture Mechanics Principles and their Application to Brittle Fracture -- 9.2.3 Probabilistic Aspects of Brittle Fracture -- 9.2.3.1 Weibull Distribution -- 9.2.3.2 Inhomogeneous Stress Fields -- 9.2.3.3 Multi-axial Stress Field -- 9.2.3.4 Size Effect on Strength -- 9.2.3.5 Influence of Flaw Populations on Fracture Statistics -- 9.2.3.6 A Simple Example for Designing with Ceramics -- 9.3 Sub-Critical Crack Growth -- 9.3.1 Sub-critical Crack Growth Under Constant Load -- 9.3.2 Sub-critical Crack Growth Under Varying Load -- 9.3.3 Proof Testing -- 9.4 Fatigue -- 9.5 Other Reasons for Damage -- 9.5.1 Thermal Shock Damage -- 9.5.2 Contact Damage -- 9.6 Mechanical Testing of Advanced Ceramics -- 9.6.1 Flexure Tests -- 9.6.2 Biaxial Tests -- 9.6.3 Strength Statistics -- 9.6.4 Fracture Toughness -- 9.7 Fractography -- 9.8 Concluding Remarks -- References -- 10 Interfaces Between Tissues and Ceramics -- 10.1 Introduction -- 10.2 Methodologies -- 10.3 Interface between Ceramic Implants and Bone -- 10.4 Interface between Porous Ceramic Implants and Bone -- 10.5 Interface between Ceramics and Soft Tissues -- Conclusions -- Acknowledgments -- References -- 11 Alumina- and Zirconia-based Ceramics for Load-bearing Applications -- 11.1 Introduction -- 11.2 Alumina in Dentistry -- 11.2.1 Structure of Alumina -- 11.2.2 Mechanical Properties -- 11.2.3 Biocompatibility of Alumina -- 11.3 Zirconia in Dentistry -- 11.3.1 Structure of Zirconia -- 11.3.1.1 Yttria-stabilized Tetragonal Zirconia Polycrystal (Y-TZP) -- 11.3.1.2 Magnesia Partially-stabilized Zirconia (Mg-PSZ) -- 11.3.2 Mechanical Properties of Zirconia -- 11.3.2.1 Low-temperature Degradation -- 11.3.3 Zirconia Radioactivity -- 11.3.4 Optical Properties.
11.3.5 Biocompatibility -- 11.4 Alumina-Zirconia Composites in Dentistry -- 11.4.1 Structure -- 11.4.2 Mechanical Properties -- 11.4.3 Biocompatibility -- 11.5 Adhesion -- References -- 12 Dental Glasses and Glass-ceramics -- 12.1 Introduction -- 12.2 Classes of Dental Glass-Ceramics -- 12.2.1 Feldspathic Porcelains -- 12.2.2 Reinforced Feldspathic Porcelain -- 12.2.3 Fluormica Glass-ceramics -- 12.2.4 Leucite Glass-ceramics -- 12.2.5 Lithium Disilicate Glass-ceramics -- 12.2.6 Fluorapatite Glass-Ceramics -- 12.2.7 Glass-infiltrated Oxide Ceramics -- 12.2.8 Summary Table -- 12.3 Limitations and Challenges -- 12.4 Future Development -- Conclusion -- Acknowledgments -- References -- 13 Requirements of Bioactive Ceramics for Dental Implants and Scaffolds -- 13.1 Introduction -- 13.2 Osseointegration -- 13.3 Phenomenological View of Bioactivity -- 13.3.1 Bioactivity and Simulated Body Fluid Test -- 13.3.2 Bone Formation by Distant and Contact Osteogenesis -- 13.3.3 Bioactive Versus Osseoconductive -- 13.4 Biological View of Bioactivity -- 13.4.1 De Novo Bone Formation at Foreign Surfaces -- 13.4.2 Balance Between Osteoblast and Osteoclast Cells -- 13.5 Load-Bearing Dental Implants -- 13.5.1 Anti-infection and Antimicrobial Effect -- 13.5.2 Surface-induced Calcium Phosphate Crystallization -- 13.5.3 Choosing the Material -- 13.6 Morphogenetically Active Scaffolds for Bone Tissue Engineering -- 13.6.1 3D Matrices Mimicking the Natural Cellular Environment -- 13.6.2 Bone Scaffold Materials and Their Fabrication Techniques -- Acknowledgments -- References -- 14 Surface Modifications of Load-Bearing Ceramics for Improved Osseointegration -- 14.1 Introduction -- 14.2 Modifications of Surface Topography -- 14.3 Modifications of Surface Chemistry -- 14.3.1 Chemical Treatments -- 14.3.2 Physical Treatments -- 14.3.3 Bioactive Coatings.
14.3.3.1 Calcium Phosphate Coatings.
Abstract:
The growth of implant and fixed prosthodontics practices in dentistry has created a rapidly increasing demand for advanced ceramics and ceramic processes. Innovations in ceramics and ceramic processes are vital to ensure reliable and affordable dental-restoration solutions with aesthetically pleasing outcomes. The work aims to engage the bioceramics and engineering communities to meet the challenges of modern dental restoration using advanced ceramics. Incorporating fundamental science, advanced engineering concepts, and clinical outcomes, the work is suitable for bioceramicists, ceramics manufacturers, dental clinicians and biologists. State-of-the-art-coverage encompasses bioresorbable ceramics for bone regeneration and bioactivating surfaces of inert, high-strength ceramics for implantation, keeping research knowledge appropriately updated Discusses transition from the baseline stable and physically stiff ceramics research into engineering of highly coherent laminate composites for prosthetic crowns and bridges Showcases current feasible techniques for producing, in cost-effective and materials-saving ways, long-lasting individualized ceramic components with biocompatibility, complexity and high precision.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Genre:
Electronic Access:
Click to View