
Nanocrystalline Materials : Their Synthesis-Structure-Property Relationships and Applications.
Title:
Nanocrystalline Materials : Their Synthesis-Structure-Property Relationships and Applications.
Author:
Tjong, Sie-Chin.
ISBN:
9780124078987
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (419 pages)
Contents:
Front Cover -- Nanocrystalline Materials -- Copyright Page -- Contents -- Preface -- List of contributors -- 1 Preparation, Structure, and Application of Carbon Nanotubes/Bamboo Charcoal Composite -- 1.1 Introduction -- 1.2 Bamboo Charcoal -- 1.2.1 Morphology, Phase, and Compositions of Bamboo Charcoal -- 1.2.2 Phases of the Minerals Inside Bamboo Charcoal -- 1.3 Functional Materials Derived from Charcoal -- 1.4 Synthesis of CNTs/Bamboo Charcoal -- 1.4.1 Low-Temperature CVD Method Assisted by Extra Catalyst -- 1.4.2 Higher Temperature CVD Method Assisted by Silicate Inside Bamboo Charcoal -- 1.4.3 Arc Discharge and Current Heating of Charcoal -- 1.5 Applications of CNT/Bamboo Charcoal -- 1.5.1 Water Purification -- 1.5.2 Hydrogen Storage -- 1.6 Conclusions -- References -- 2 Hierarchically Nanostructured One-Dimensional Metal Oxide Arrays for Solar Cells -- 2.1 Introduction -- 2.2 Measurements of Charge Transport and Recombination in the DSSCs -- 2.2.1 Electrochemical Impedance Spectroscopy -- 2.2.2 Optical Modulation Spectroscopy-Intensity-Modulated Photocurrent Spectroscopy and Intensity-Modulated Photovoltage Sp... -- 2.3 ZnO-Based DSSCs -- 2.4 Wet Chemical Route to ZnO NW-Layered Basic Zinc Acetate/ZnO NP Composite Film for Use in DSSCs -- 2.4.1 Formation and Structural Characterizations of ZnO NW-LBZA/ZnO NP Composite Film -- 2.4.2 Formation Mechanism of the NW-NP Composite Film -- 2.4.3 Photovoltaic Performances of the Mercurochrome-Sensitized ZnO NW-NP DSSCs -- 2.4.4 Charge Transport Properties in the Mercurochrome-Sensitized ZnO NW-NP DSSCs -- 2.5 Light Scattering Layers on 1D Nanostructured ZnO DSSC Anodes -- 2.5.1 Construction of Nanocrystalline Film on ZnO NW Array via Swelling Electrospun Polyvinylpyrrolidone-Host Nanofibers -- 2.5.2 Photovoltaic Performances of the D149-Sensitized ZnO NW DSSCs with Electrospun Light Scattering Layers.
2.6 3D ZnO ND/NP Composite Films for Use in DSSCs -- 2.6.1 Formation and Structural Characterizations of the ZnO ND Arrays and ZnO ND/NP Composite Films -- 2.6.2 Formation Mechanism of ZnO ND -- 2.6.3 Photovoltaic Performances and Charge Transport Properties of the D149-Sensitized ZnO ND and ZnO ND/NP Composite DSSCs -- 2.7 Room-Temperature Fast Construction of ZnO Nanoarchitectures on 1D Array Templates for DSSCs -- 2.7.1 Formation and Structural Characterizations of the ZnO NC Arrays -- 2.7.2 Photovoltaic Performances and Charge Transport Properties of the D149-Sensitized ZnO NC DSSCs -- 2.8 Concluding Remarks -- References -- 3 One-Dimensional Nanomaterials for Energy Applications -- 3.1 Introduction -- 3.2 Synthesis, Characterization, and Properties of 1D Nanomaterials -- 3.2.1 Synthesis of 1D Nanomaterials -- 3.2.1.1 Top-Down Methods -- Reactive Ion Etching -- Anodic Oxidation -- Metal-Assisted Chemical Etching -- 3.2.1.2 Bottom-Up Approaches -- Vapor Phase Growth -- Liquid Phase Growth -- Electrospinning -- Template-Assisted Synthesis -- 3.2.2 Characterization -- 3.2.2.1 Morphology, Composition, and Crystallography -- 3.2.2.2 Bandgap and Point Defects -- 3.2.2.3 Trace Dopants -- 3.2.3 Fundamental Properties -- 3.2.3.1 Electrical Property -- 3.2.3.2 Optical Property -- 3.2.3.3 Thermal Property -- 3.2.3.4 Mechanical Property -- 3.3 Solar Energy Harvesting -- 3.3.1 Photovoltaic Cells -- 3.3.2 Photoelectrochemical Cells -- 3.3.3 Solar Hydrogen Production -- 3.4 Piezoelectric Energy Transformation -- 3.4.1 Piezoelectric Effect -- 3.4.2 Piezoelectric Nanogenerators -- 3.5 Thermal Energy Conversion -- 3.5.1 Thermoelectric Generators -- 3.5.2 Pyroelectric Generators -- 3.6 Energy Storage -- 3.6.1 H2 Fuel Cells -- 3.6.2 Li-Ion Battery -- 3.6.3 Supercapacitors -- 3.7 Summary and Outlook -- References.
4 Lanthanide-Doped Nanoparticles: Synthesis, Property, and Application -- 4.1 Introduction -- 4.2 Wet-Chemical Synthesis of Nanoparticles -- 4.2.1 Synthesis of Core Nanoparticles -- 4.2.2 Synthesis of Core-Shell Nanoparticles -- 4.3 Tuning Nanoparticle Properties -- 4.3.1 Tuning Shape and Size -- 4.3.2 Tuning Optical Emission -- 4.3.3 Tuning Surface Properties and Functionality -- 4.4 Technological Applications -- 4.4.1 Bioapplication -- 4.4.1.1 Biodetection -- 4.4.1.2 Bioimaging -- 4.4.1.3 Therapeutics -- 4.4.2 Photovoltaic Application -- 4.4.2.1 DF Nanoparticles for PV Application -- 4.4.2.2 DC Nanoparticles for PV Application -- 4.4.2.3 UC Nanoparticles for PV Application -- 4.4.3 Other Applications -- 4.5 Conclusion -- Acknowledgment -- References -- 5 Self-Assembled Monolayer Covalently Fixed on Oxide-Free Silicon -- 5.1 Introduction -- 5.2 Chemical Reactions of Si-H Groups with Organic Molecules -- 5.3 Photochemical Grafting of Alkyl SAMs on Si(111)-H -- 5.3.1 Molecular Grafting with Visible-Light Activation -- 5.3.2 HD-SAMs on Si Prepared by the Three Different Methods -- 5.3.3 Wavelength Dependence on the Photoactivation Process -- 5.4 Photochemical Preparation of Methyl-Terminated Si(111) -- 5.4.1 Methyl-Termination Process -- 5.4.2 Properties of CH3-Terminated Si(111) -- 5.5 Chemical and Mechanical Properties of SAMs on Si -- 5.5.1 SAMs Prepared for Chemical Durability Testing -- 5.5.2 Chemical Durability -- 5.5.3 Tribological Properties of Direct-Bonding SAMs on Si -- 5.6 Electronic Functions of Direct-Bonding SAMs on Si -- 5.6.1 SAMs as Dielectric Layers -- 5.6.2 Redox-Active SAM on Si -- 5.7 Summary and Conclusion -- References -- 6 Nanocomposite Dielectric Materials for Organic Flexible Electronics -- 6.1 Introduction -- 6.2 The Development of Organic Electronics -- 6.3 Basic Concept of Dielectric Materials in Organic Electronics.
6.4 Nanocomposite Dielectrics with Unmodified Nanoparticles -- 6.5 Nanocomposite Dielectrics with Modified Nanoparticles -- 6.6 Characterization of the Nanocomposite Dielectrics -- 6.7 Electrical Properties of the Devices on Nanocomposite Dielectrics -- 6.8 Bending Experiments of the Flexible Devices -- 6.9 Conclusion -- References -- 7 Nanomaterials for Drug Delivery -- 7.1 Introduction -- 7.2 Nanomaterials for Drug Delivery -- 7.2.1 Semiconductor Quantum Dots -- 7.2.2 Magnetic Nanoparticles -- 7.2.3 Layered Double Hydroxides -- 7.2.4 Mesoporous Silica Nanomaterials -- 7.2.5 Organic Nanoparticles -- 7.2.6 Metal Nanomaterials -- 7.2.7 Micro/Nanobubbles -- 7.2.8 Multifunctional Nanomaterials -- 7.2.9 Toxicity and Hazards of Nanomaterials -- 7.3 Conclusion -- References -- 8 Processing and Deformation Characteristics of Metals Reinforced with Ceramic Nanoparticles -- 8.1 Introduction -- 8.2 Fabrication of MMNCs -- 8.2.1 Liquid-State Processing -- 8.2.1.1 Al-Based Nanocomposites -- 8.2.1.2 Mg-Based Nanocomposites -- 8.2.2 Solid-State Processing -- 8.2.2.1 Al-Based Nanocomposites -- 8.2.2.2 Mg-Based Nanocomposites -- 8.3 Mechanical Properties -- 8.3.1 Al-Based Nanocomposites -- 8.3.1.1 Nanocomposites Fabricated by Liquid-State Processing -- 8.3.1.2 Nanocomposites Fabricated by Solid-State Processing -- 8.3.2 Mg-Based Nanocomposites -- 8.3.2.1 Nanocomposites Fabricated by Liquid-State Processing -- 8.3.2.2 Nanocomposites Fabricated by Solid-State Processing -- 8.4 Conclusions -- References -- 9 Polymer Nanocomposites with High Permittivity -- 9.1 Introduction -- 9.2 Routes of Permittivity Improvement in Polymeric Materials -- 9.2.1 Design and Adjustment of Molecular Structure of Polymers -- 9.2.2 A Simple Route by Introducing Nanoparticles into Polymers -- 9.2.3 Physical Parameters for Characterizing Dielectric Polymer Composites.
9.3 Ceramic Nanoparticle/Polymer Nanocomposites with High Permittivity -- 9.4 Metal Nanoparticle/Polymer Nanocomposites with High Permittivity -- 9.5 Organic Nanoparticle/Polymer Nanocomposites with High Permittivity -- 9.6 Carbon Nanoparticle/Polymer Nanocomposites with High Permittivity -- 9.7 Current Issues and Conclusions -- Acknowledgments -- References -- 10 Synthesis and Structural-Mechanical Property Characteristics of Graphene-Polymer Nanocomposites -- 10.1 Introduction -- 10.2 Fabrication of Graphene/Polymer Nanocomposites -- 10.2.1 Functionalization of GO -- 10.2.2 Solution Mixing -- 10.2.3 In situ Polymerization -- 10.2.4 Melt Mixing -- 10.3 Mechanical Properties -- 10.3.1 Thermoplastic Matrix -- 10.3.2 Thermosetting Matrix -- 10.4 Conclusions -- References -- 11 Zener Tunneling in Polymer Nanocomposites with Carbonaceous Fillers -- 11.1 Background -- 11.2 Electrical Conduction Behavior -- 11.2.1 Percolation -- 11.2.2 Nonlinear Electrical Conductivity -- 11.2.3 Electrical Transport Mechanisms -- 11.3 Zener Tunneling in Polymer Nanocomposites with Carbonaceous Fillers -- 11.3.1 Zener Tunneling -- 11.3.2 The Emerging Model -- 11.3.3 Zener Tunneling in CNF/CNT-Based Polymer Nanocomposites -- 11.3.4 Zener Tunneling in GNP-Based Polymer Nanocomposites -- 11.3.5 Zener Tunneling in Graphene-Based Polymer Nanocomposites -- 11.4 Concluding Remarks -- References.
Abstract:
This second edition of Nanocrystalline Materials provides updated information on the development and experimental work on the synthesis, properties, and applications of nanocrystalline materials. Nanocrystalline materials with new functionalities show great promise for use in industrial applications - such as reinforcing fillers in novel polymer composites - and substantial progress has been made in the past decade in their synthesis and processing. This book focuses primarily on 1D semiconducting oxides and carbon nanotubes, 2D graphene sheets and 0D nanoparticles (metals and inorganic semiconductors). These materials are synthesized under different compositions, shapes and structures, exhibiting different chemical, physical and mechanical properties from their bulk counterparts. This second edition presents new topics relevant to the fast-paced development of nanoscience and nanotechnology, including the synthesis and application of nanomaterials for drug delivery, energy, printed flash memory, and luminescent materials. With contributions from leading experts, this book describes the fundamental theories and concepts that illustrate the complexity of developing novel nanocrystalline materials, and reviews current knowledge in the synthesis, microstructural characterization, physical and mechanical behavior, and application of nanomaterials. Investigates the synthesis, characterization, and properties of a large variety of nanocrystalline materials, and their applications in industry Keeps the prominent challenges in nanomaterials fabrication at the forefront while offering the most up-to-date scientific findings Written by experts in nanomaterials with academic backgrounds in chemistry, physics, and materials engineering.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View