
Collisionless Plasmas in Astrophysics.
Title:
Collisionless Plasmas in Astrophysics.
Author:
Belmont, G?rard.
ISBN:
9783527656240
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (427 pages)
Contents:
Collisionless Plasmas in Astrophysics -- Contents -- About the Authors -- 1 Introduction -- 1.1 Goals of the Book -- 1.2 Plasmas in Astrophysics -- 1.2.1 Plasmas Are Ubiquitous -- 1.2.2 The Magnetosphere of Stars -- 1.2.3 Shock Waves -- 1.2.4 Planetary Magnetospheres -- 1.3 Upstream of Plasma Physics: Electromagnetic Fields and Waves -- 1.3.1 Electromagnetic Fields -- 1.3.2 Transverse and Longitudinal Electromagnetic Field -- 1.3.3 Electromagnetic Fields in Vacuum -- 1.3.4 Plane Waves in a Plasma -- 1.3.5 Electromagnetic Components of Plane Plasma Waves -- 1.3.6 Some General Properties of Plane Wave Polarization and Dispersion -- 1.3.7 Electrostatic Waves -- 1.3.8 Wave Packets and Group Velocity -- 1.3.9 Propagation of Plane Waves in a Weakly Inhomogeneous Medium -- 1.3.10 Useful Approximations of the Maxwell Equations in Plasma Physics -- 1.4 Upstream of Plasma Physics: The Motion of Charged Particles -- 1.4.1 The Motion of the Guiding Center -- 1.4.2 Adiabatic Invariants -- 1.4.3 The Motion of a Particle in a Wave -- 2 Plasma Descriptions and Plasma Models -- 2.1 Distribution Function and Moments -- 2.1.1 From Individual Particles to Kinetic Description -- 2.1.2 Kinetic Description and First Order Moments -- 2.1.3 Higher-Order Moments -- 2.1.4 Moments for a Mixture of Populations -- 2.1.5 Nontrivial Generalization of the Fluid Concepts -- 2.1.6 Fluid vs. Kinetic Description: An Example -- 2.2 From Kinetic to Fluid Equations -- 2.2.1 Moment Equations -- 2.2.2 Lagrangian Form of the Moment Equations -- 2.2.3 Fluid Equations: Necessity of a Closure Equation -- 2.2.4 Collisional Limit: Fluid Dynamics and Thermodynamics -- 2.3 Numerical Methods -- 2.3.1 Vlasov Codes -- 2.3.2 Particle in Cell Codes (PIC) -- 2.3.3 Perturbative PIC Codes -- 2.4 Fluid Codes -- 2.5 Hybrid Codes -- 3 The Magnetized Plasmas -- 3.1 Ideal MHD -- 3.1.1 The Ideal MHD System.
3.1.2 The Ideal Ohm's Law -- 3.2 Establishing the MHD Model -- 3.2.1 Large-Scale Conditions of Validity -- 3.2.2 Departures from MHD: Multi-Fluid and Kinetic Effects -- 3.3 Dimensional Analysis and Plasma Characteristic Scales -- 3.3.1 Dimensional Analysis: The General Methods -- 3.3.2 Temporal and Spatial Scales, Adimensional Numbers -- 3.3.3 Dispersive and Dissipative Effects -- 3.3.4 Physical Importance of the Dimensionless Parameters -- 4 Collisional-Collisionless -- 4.1 Notion of Collisions in Plasma Physics -- 4.1.1 Coulomb Interaction: A Long Range Interaction -- 4.1.2 Mean Free Path -- 4.1.3 The Debye Length and the Notion of Debye "Screening" -- 4.1.4 Knudsen Number -- 4.1.5 Plasma Regimes -- 4.2 Notion of Dissipation -- 4.2.1 Transfers of Energy and Dissipation -- 4.2.2 The Concept of Dissipation in Collisional Fluids -- 4.2.3 Reversibility -- 4.2.4 Irreversibility and Damping -- 4.2.5 The Notion of Reversibility Depends on the Description -- 4.2.6 Entropy -- 5 Waves in Plasmas -- 5.1 MHD Waves -- 5.1.1 Polarization of the MHD Waves -- 5.1.2 Application: Alfvén and MHD Waves in the Earth's Magnetosphere -- 5.2 Transport Induced by Waves -- 5.2.1 Alfvén Wave Pressure -- 5.3 High-Frequency Waves -- 5.3.1 Cold Plasma Model -- 5.3.2 Parallel Propagation -- 5.3.3 Perpendicular Propagation: Ordinary and Extraordinary Waves -- 5.3.4 Application: Plasma Cut-offs and Limits to the Radio Astronomy -- 5.3.5 Application: The Dispersion of Radio Waves from Pulsars -- 5.3.6 Application: Faraday Rotation in the Interstellar Medium -- 5.4 Whistler Mode -- 5.5 Collisional Damping in Fluid Theories -- 5.5.1 Dissipative Effects and Entropy -- 5.5.2 Dissipation and Collisions -- 5.5.3 Strongly Collisional Systems -- 5.5.4 Heat Conduction: From Collisional to Collisionless.
5.5.5 The Thermoelectric Field: Another Consequence of Collisions between Ions and Electrons -- 5.6 Collisionless Damping -- 5.6.1 Number of Eigenmodes: Fluid vs. Kinetic -- 5.6.2 A Simple Example: The Langmuir Wave, from Fluid to Kinetic -- 5.6.3 Fluid Treatment of the Langmuir Wave: Choice of a Closure -- 5.6.4 Kinetic Treatment of the Langmuir Wave: Landau Damping -- 5.6.5 Other Types of Kinetic Damping -- 5.7 Instabilities -- 5.7.1 Real Space Instabilities: Fluid Treatment -- 5.7.2 Velocity Space Instabilities: Kinetic Treatment -- 5.7.3 Weak Kinetic Effects -- 5.7.4 An Example: The Two-Stream Instability -- 6 Nonlinear Effects, Shocks, and Turbulence -- 6.1 Collisionless Shocks and Discontinuities -- 6.1.1 Nonlinear Propagation, Discontinuities, Jumps -- 6.1.2 Shocks and Other Discontinuities in a Magnetized Plasma -- 6.1.3 The Unmagnetized Shock Wave -- 6.1.4 A Particular Case: The Tangential Discontinuity -- 6.1.5 Example: The Terrestrial Bow Shock, the Foreshocks -- 6.2 Turbulence (Mainly MHD) -- 6.2.1 Hydrodynamics: Equations, Shocks -- 6.2.2 Hydrodynamics: 3D Incompressible Turbulence -- 6.2.3 MHD Turbulence - Introduction -- 6.2.4 Weak Isotropic (IK) Regime -- 6.2.5 Anisotropic Regimes -- 6.2.6 Discussion -- 6.3 Nonlinear Kinetic Physics -- 6.3.1 Nonlinear Electrostatic Waves -- 6.3.2 Particle Trapping -- 6.3.3 The Nonlinear Interaction of Many Electrostatic Waves of Low Amplitude -- 6.3.4 Quasi-Linear Theory -- 6.3.5 Trapping versus Quasi-Linear Diffusion -- 7 Flow and Particle Acceleration Processes -- 7.1 Flow Acceleration and Heating in a Collisional Fluid -- 7.1.1 Basic Equations -- 7.1.2 Expressions for the Polytropic Fluids -- 7.1.3 Bernoulli's Principle -- 7.1.4 Venturi Effect -- 7.1.5 De Laval Nozzle -- 7.1.6 Stellar Winds -- 7.1.7 Possible Routes to Turbulence in Stellar Winds -- 7.1.8 Accretion -- 7.2 Magnetic Reconnection.
7.2.1 Conservation of Connections vs. Reconnection -- 7.2.2 Departure from the Ideal Ohm's Law: Microscopic Mechanisms and Macroscopic Consequences -- 7.2.3 Flow Acceleration by Reconnection -- 7.2.4 Tearing Instability -- 7.2.5 3D Reconnection -- 7.3 Kinetic Acceleration Processes in Magnetospheres -- 7.3.1 Substorms and Auroras in the Earth's Magnetosphere -- 7.3.2 Fermi Acceleration in the Magnetosphere -- 7.3.3 Acceleration by a Forced Current Forced along Convergent Magnetic Field Lines -- 7.3.4 Acceleration by an Electric Current Forced by a Wave -- 7.3.5 Acceleration by an Alfvén Wave (NonMHD) Parallel Electric Field -- 7.3.6 Resonant Acceleration by a Wave -- 7.3.7 Acceleration by a Wave of Short Length -- 7.3.8 Application: Acceleration in the Earth's Magnetosphere -- 8 Transport and Acceleration of Cosmic Rays -- 8.1 The Problem of Transport -- 8.1.1 The Magnetic Field: Obstruction to Transport -- 8.1.2 Magnetic Irregularities: Transport Agent -- 8.1.3 Other Diffusion Coefficients -- 8.1.4 Transport Equation of Cosmic Rays -- 8.1.5 Distribution of Suprathermal Particles Crossing a Shock -- 8.1.6 From Transport to Acceleration -- 8.2 Fermi Acceleration of Cosmic Rays -- 8.2.1 The Basic Fermi Process -- 8.2.2 Fermi Process at a Nonrelativistic Shock -- 8.2.3 Astrophysical Application: Cosmic Rays and Supernovae -- 8.2.4 Astrophysical Application: Synchrotron Sources -- 8.2.5 Generation of Magnetic Turbulence -- 8.2.6 Why Are Fermi Processes Favored at Shocks? -- 8.2.7 What about the Relativistic Regime of Fermi Acceleration? -- 9 The Kinetic-Fluid Duality -- 9.1 Toy Models -- 9.1.1 Small Amplitude Ballistic Fluctuations -- 9.1.2 Large-Amplitude Ballistic Fluctuations -- 9.1.3 Quasi-Fluid Behavior of a Collisionless Plasma: Launching a 2D Plasma Bullet -- 9.2 Solar and Stellar Wind Expansion -- 9.2.1 A Simple Noncollisional Wind.
9.2.2 More Sophisticated Noncollisional Wind Models -- 9.2.3 Charge Neutralizing Field for a Plasma in a Gravitational Field -- 9.2.4 Qualitative Radial Profile of the Total Proton Potential -- 9.2.5 Charge Neutralizing Electric Field and Dreicer Field -- 9.2.6 Electric Field Intensity at the Sonic Radius rs -- 9.2.7 Effective Closure for the Solar Wind -- Appendix -- A.1 Notation -- A.1.1 Vectors and Tensors -- A.1.2 Derivatives -- A.1.3 List of Notation -- A.2 Asymptotic Expansions and Adiabatic Invariants -- A.2.1 Multiscale Expansion -- A.2.2 The Adiabatic Invariants -- A.2.3 Derivation of the Guiding Center Equations -- A.3 Fokker-Planck Equation, First Order Term -- References -- Index.
Abstract:
Collisionless Plasmas in Astrophysics examines the unique properties of media without collisions in plasma physics. Experts in this field, the authors present the first book to concentrate on collisionless conditions in plasmas, whether close or not to thermal equilibrium. Filling a void in scientific literature, Collisionless Plasmas in Astrophysics explains the possibilities of modeling such plasmas, using a fluid or a kinetic framework. It also addresses common misconceptions that even professionals may possess, on phenomena such as "collisionless (Landau) damping". Abundant illustrations are given in both space physics and astrophysics.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View