
Scaling Big Data with Hadoop and Solr.
Title:
Scaling Big Data with Hadoop and Solr.
Author:
Karambelkar, Hrishikesh.
ISBN:
9781783281381
Personal Author:
Physical Description:
1 online resource (184 pages)
Contents:
Scaling Big Data with Hadoop and Solr -- Table of Contents -- Scaling Big Data with Hadoop and Solr -- Credits -- About the Author -- About the Reviewer -- www.PacktPub.com -- Support files, eBooks, discount offers and more -- Why Subscribe? -- Free Access for Packt account holders -- Preface -- What this book covers -- What you need for this book -- Who this book is for -- Conventions -- Reader feedback -- Customer support -- Downloading the example code -- Errata -- Piracy -- Questions -- 1. Processing Big Data Using Hadoop and MapReduce -- Understanding Apache Hadoop and its ecosystem -- The ecosystem of Apache Hadoop -- Apache HBase -- Apache Pig -- Apache Hive -- Apache ZooKeeper -- Apache Mahout -- Apache HCatalog -- Apache Ambari -- Apache Avro -- Apache Sqoop -- Apache Flume -- Storing large data in HDFS -- HDFS architecture -- NameNode -- DataNode -- Secondary NameNode -- Organizing data -- Accessing HDFS -- Creating MapReduce to analyze Hadoop data -- MapReduce architecture -- JobTracker -- TaskTracker -- Installing and running Hadoop -- Prerequisites -- Setting up SSH without passphrases -- Installing Hadoop on machines -- Hadoop configuration -- Running a program on Hadoop -- Managing a Hadoop cluster -- Summary -- 2. Understanding Solr -- Installing Solr -- Apache Solr architecture -- Storage -- Solr engine -- The query parser -- Interaction -- Client APIs and SolrJ client -- Other interfaces -- Configuring Apache Solr search -- Defining a Schema for your instance -- Configuring a Solr instance -- Configuration files -- Request handlers and search components -- Facet -- MoreLikeThis -- Highlight -- SpellCheck -- Metadata management -- Loading your data for search -- ExtractingRequestHandler/Solr Cell -- SolrJ -- Summary -- 3. Making Big Data Work for Hadoop and Solr -- The problem -- Understanding data-processing workflows.
The standalone machine -- Distributed setup -- The replicated mode -- The sharded mode -- Using Solr 1045 patch - map-side indexing -- Benefits and drawbacks -- Benefits -- Drawbacks -- Using Solr 1301 patch - reduce-side indexing -- Benefits and drawbacks -- Benefits -- Drawbacks -- Using SolrCloud for distributed search -- SolrCloud architecture -- Configuring SolrCloud -- Using multicore Solr search on SolrCloud -- Benefits and drawbacks -- Benefits -- Drawbacks -- Using Katta for Big Data search (Solr-1395 patch) -- Katta architecture -- Configuring Katta cluster -- Creating Katta indexes -- Benefits and drawbacks -- Benefits -- Drawbacks -- Summary -- 4. Using Big Data to Build Your Large Indexing -- Understanding the concept of NOSQL -- The CAP theorem -- What is a NOSQL database? -- The key-value store or column store -- The document-oriented store -- The graph database -- Why NOSQL databases for Big Data? -- How Solr can be used for Big Data storage? -- Understanding the concepts of distributed search -- Distributed search architecture -- Distributed search scenarios -- Lily - running Solr and Hadoop together -- The architecture -- Write-ahead Logging -- The message queue -- Querying using Lily -- Updating records using Lily -- Installing and running Lily -- Deep dive - shards and indexing data of Apache Solr -- The sharding algorithm -- Adding a document to the distributed shard -- Configuring SolrCloud to work with large indexes -- Setting up the ZooKeeper ensemble -- Setting up the Apache Solr instance -- Creating shards, collections, and replicas in SolrCloud -- Summary -- 5. Improving Performance of Search while Scaling with Big Data -- Understanding the limits -- Optimizing the search schema -- Specifying the default search field -- Configuring search schema fields -- Stop words -- Stemming -- Index optimization.
Limiting the indexing buffer size -- When to commit changes? -- Optimizing the index merge -- Optimize an option for index merging -- Optimizing the container -- Optimizing concurrent clients -- Optimizing the Java virtual memory -- Optimization the search runtime -- Optimizing through search queries -- Filter queries -- Optimizing the Solr cache -- The filter cache -- The query result cache -- The document cache -- The field value cache -- Lazy field loading -- Optimizing search on Hadoop -- Monitoring the Solr instance -- Using SolrMeter -- Summary -- A. Use Cases for Big Data Search -- E-commerce websites -- Log management for banking -- The problem -- How can it be tackled? -- High-level design -- B. Creating Enterprise Search Using Apache Solr -- schema.xml -- solrconfig.xml -- spellings.txt -- synonyms.txt -- protwords.txt -- stopwords.txt -- C. Sample MapReduce Programs to Build the Solr Indexes -- The Solr-1045 patch - map program -- The Solr-1301 patch - reduce-side indexing -- Katta -- Index.
Abstract:
This book is a step-by-step tutorial that will enable you to leverage the flexible search functionality of Apache Solr together with the Big Data power of Apache Hadoop.Scaling Big Data with Hadoop and Solr provides guidance to developers who wish to build high-speed enterprise search platforms using Hadoop and Solr. This book is primarily aimed at Java programmers who wish to extend the Hadoop platform to make it run as an enterprise search without any prior knowledge of Apache Hadoop and Solr.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View