
Multiscale Analysis and Nonlinear Dynamics : From Genes to the Brain.
Title:
Multiscale Analysis and Nonlinear Dynamics : From Genes to the Brain.
Author:
Schuster, Heinz Georg.
ISBN:
9783527671663
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (327 pages)
Series:
Annual Reviews of Nonlinear Dynamics and Complexity (VCH) Ser.
Contents:
Multiscale Analysis and Nonlinear Dynamics: From Genes to the Brain -- Contents -- List of Contributors -- Preface -- 1 Introduction: Multiscale Analysis - Modeling, Data, Networks, and Nonlinear Dynamics -- 1.1 Multiscale Modeling -- 1.1.1 Domain-Specific Modeling -- 1.1.2 Analysis -- 1.1.3 Model Interpretation and Verification: Experimental/Simulation Data -- 1.2 Multiresolution Analysis and Processing of High-Dimensional Information/Data -- 1.3 Multiscale Analysis, Networks, and Nonlinear Dynamics -- 1.4 Conclusions -- References -- Part One: Multiscale Analysis -- 2 Modeling Across Scales: Discrete Geometric Structures in Homogenization and Inverse Homogenization -- 2.1 Introduction -- 2.2 Homogenization of Conductivity Space -- 2.2.1 Homogenization as a Nonlinear Operator -- 2.2.2 Parameterization of the Conductivity Space -- 2.3 Discrete Geometric Homogenization -- 2.3.1 Homogenization by Volume Averaging -- 2.3.2 Homogenization by Linear Interpolation -- 2.3.3 Semigroup Properties in Geometric Homogenization -- 2.4 Optimal Weighted Delaunay Triangulations -- 2.4.1 Construction of Positive Dirichlet Weights -- 2.4.2 Weighted Delaunay and Q-Adapted Triangulations -- 2.4.3 Computing Optimal Weighted Delaunay Meshes -- 2.5 Relationship to Inverse Homogenization -- 2.6 Electrical Impedance Tomography -- 2.6.1 Numerical Tests -- 2.6.1.1 Harmonic Coordinate Iteration -- 2.6.1.2 Divergence-Free Parameterization Recovery -- References -- 3 Multiresolution Analysis on Compact Riemannian Manifolds -- 3.1 Introduction -- 3.2 Compact Manifolds and Operators -- 3.2.1 Manifolds without Boundary -- 3.2.2 Compact Homogeneous Manifolds -- 3.2.3 Bounded Domains with Smooth Boundaries -- 3.3 Hilbert Frames -- 3.4 Multiresolution and Sampling -- 3.5 Shannon Sampling of Band-Limited Functions on Manifolds -- 3.6 Localized Frames on Compact Manifolds.
3.7 Parseval Frames on Homogeneous Manifolds -- 3.8 Variational Splines on Manifolds -- 3.9 Conclusions -- References -- Part Two: Nonlinear Dynamics: Genelets and Synthetic Biochemical Circuits -- 4 Transcriptional Oscillators -- 4.1 Introduction -- 4.2 Synthetic Transcriptional Modules -- 4.2.1 Elementary Activation and Inhibition Pathways, and Simple Loops -- 4.2.2 Experimental Implementation -- 4.3 Molecular Clocks -- 4.3.1 A Two-Node Molecular Oscillator -- 4.3.2 Analysis of the Oscillatory Regime -- 4.3.3 Experimental Implementation and Data -- 4.4 Scaling Up Molecular Circuits: Synchronization of Molecular Processes -- 4.4.1 Analysis of the Load Dynamics -- 4.4.1.1 Quasisteady State Approximation of the Load Dynamics -- 4.4.1.2 Efficiency of Signal Transmission -- 4.4.2 Perturbation of the Oscillator Caused by the Load -- 4.4.2.1 Consumptive Coupling -- 4.4.2.2 Nonconsumptive Coupling and Retroactivity -- 4.4.3 Insulation -- 4.4.3.1 Reduction of Perturbations on the Oscillator Dynamics -- 4.4.3.2 Signal Transmission to the Insulated Load -- 4.5 Oscillator Driving a Load: Experimental Implementation and Data -- 4.6 Deterministic Predictive Models for Complex Reaction Networks -- 4.7 Stochastic Effects -- 4.8 Conclusions -- References -- 5 Synthetic Biochemical Dynamic Circuits -- 5.1 Introduction -- 5.2 Out-of-Equilibrium Chemical Systems -- 5.2.1 A Short Historical Overview -- 5.2.1.1 Discovery of Nonlinear Chemical Systems -- 5.2.1.2 Unexpected Oscillating Chemical Systems -- 5.2.2 Building Nonequilibrium Systems -- 5.2.2.1 Energetic Requirements -- 5.2.2.2 System Closure -- 5.2.2.3 Instabilities and Dynamic Stability -- 5.2.3 Design Principles -- 5.2.3.1 Dynamism -- 5.2.3.2 Interacting Feedbacks Processes -- 5.2.3.3 Modularity -- 5.3 Biological Circuits -- 5.3.1 Biological Networks Modeled by Chemistry.
5.3.2 Biosystems: A Multilevel Complexity -- 5.3.3 A First Example of a Biological Reaction Circuit -- 5.3.4 Biological Networking Strategy -- 5.3.4.1 GRNs Are Templated Networks -- 5.3.4.2 Regulation and Feedback Loops -- 5.3.4.3 Nonlinearities in Genetic Regulation -- 5.3.4.4 Delays -- 5.3.4.5 Titration Effects -- 5.3.5 Higher Level Motifs and Modularity of Biochemical Networks -- 5.4 Programmable In Vitro Dynamics -- 5.4.1 Enzymatic Systems -- 5.4.1.1 DNA-RNA Sequence Amplification -- 5.4.1.2 The Genelet System -- 5.4.1.3 The PEN Toolbox -- 5.4.2 Nonenzymatic Networks: Strand Displacement Systems -- 5.4.3 Numerical Modeling -- 5.4.3.1 Mathematical Descriptions -- 5.4.3.2 LSA and Bifurcation Analysis for Design -- 5.4.3.3 Time Evolutions -- 5.4.3.4 Robustness Analysis and In Silico Evolutions -- 5.5 Perspectives -- 5.5.1 DNA Computing -- 5.5.2 Self Organizing Spatial Patterns -- 5.5.3 Models of Biological Networks -- 5.5.4 Origin of Life -- References -- Part Three: Nonlinear Dynamics: the Brain and the Heart -- 6 Theoretical and Experimental Electrophysiology in Human Neocortex: Multiscale Dynamic Correlates of Conscious Experience -- 6.1 Introduction to Brain Complexity -- 6.1.1 Human Brains and Other Complex Adaptive Systems -- 6.1.2 Is "Consciousness" a Four-Letter Word? -- 6.1.3 Motivations and Target Audiences for this Chapter -- 6.1.4 Brain Imaging at Multiple Spatial and Temporal Scales -- 6.1.5 Multiple Scales of Brain Dynamics in Consciousness -- 6.2 Brief Overview of Neocortical Anatomy and Physiology -- 6.2.1 The Human Brain at Large Scales -- 6.2.2 Chemical Control of Brain and Behavior -- 6.2.3 Electrical Transmission -- 6.2.4 Neocortex -- 6.2.5 The Nested Hierarchy of Neocortex: Multiple Scales of Brain Tissue -- 6.2.6 Corticocortical Connections Are Nonlocal and "Small World" -- 6.3 Multiscale Theory in Electrophysiology.
6.3.1 Characteristic EEG and Physiological Time Scales -- 6.3.2 Local versus Global Brain Models and Spatial Scale -- 6.3.3 A Large-Scale Model of EEG Standing Waves -- 6.3.4 Relationships between Small, Intermediate, and Large Scales: A Simple Mechanical Analog -- 6.4 Statistical Mechanics of Neocortical Interactions -- 6.4.1 SMNI on Short-Term Memory and EEG -- 6.4.1.1 SMNI STM -- 6.4.1.2 SMNI EEG -- 6.4.2 Euler-Lagrange Equations -- 6.4.2.1 Columnar EL -- 6.4.2.2 Strings EL -- 6.4.2.3 Springs EL -- 6.4.3 Smoking Gun -- 6.4.3.1 Neocortical Magnetic Fields -- 6.4.3.2 SMNI Vector Potential -- 6.5 Concluding Remarks -- References -- 7 Multiscale Network Organization in the Human Brain -- 7.1 Introduction -- 7.2 Mathematical Concepts -- 7.3 Structural Multiscale Organization -- 7.4 Functional Multiscale Organization -- 7.5 Discussion -- 7.5.1 Structure and Function -- 7.5.2 Hierarchical Modularity -- 7.5.3 Power-Law Scaling -- 7.5.4 Network Models of Multiscale Structure -- References -- 8 Neuronal Oscillations Scale Up and Scale Down Brain Dynamics -- 8.1 Introduction -- 8.2 The Brain Web of Cross-Scale Interactions -- 8.3 Multiscale Recordings of the Human Brain -- 8.4 Physiological Correlates of Cross-Level Interactions -- 8.5 Level Entanglement and Cross-Scale Coupling of Neuronal Oscillations -- 8.6 Conclusions -- References -- 9 Linking Nonlinear Neural Dynamics to Single-Trial Human Behavior -- 9.1 Neural Dynamics Are Complex -- 9.2 Data Analysis Techniques and Possibilities Are Expanding Rapidly -- 9.3 The Importance of Linking Neural Dynamics to Behavior Dynamics -- 9.4 Linear Approaches of Linking Neural and Behavior Dynamics -- 9.5 Nonlinear Dynamics and Behavior: Phase Modulations -- 9.6 Cross-Frequency Coupling -- 9.7 Linking Cross-Frequency Coupling to Behavior.
9.8 Testing for Causal Involvement of Nonlinear Dynamics in Cognition and Behavior -- 9.9 Conclusions -- References -- 10 Brain Dynamics at Rest: How Structure Shapes Dynamics -- 10.1 Introduction -- 10.2 Model -- 10.3 Results -- 10.3.1 Neural Dynamics -- 10.3.1.1 Case of Infinite Conduction Velocity -- 10.3.1.2 Case of Finite Conduction Velocity -- 10.3.2 BOLD Dynamics -- 10.4 Comparison with Experimental Data -- 10.5 Discussion -- References -- 11 Adaptive Multiscale Encoding: A Computational Function of Neuronal Synchronization -- 11.1 Introduction -- 11.2 Some Basic Mathematical Concepts -- 11.3 Neural Synchronization -- 11.3.1 Connections with Some Existing Approaches to MRA -- 11.4 Concluding Remarks -- References -- 12 Multiscale Nonlinear Dynamics in Cardiac Electrophysiology: From Sparks to Sudden Death -- 12.1 Introduction -- 12.2 Subcellular Scale: Criticality in the Transition from Ca Sparks to Ca Waves -- 12.3 Cellular Scale: Action Potential and Ca Cycling Dynamics -- 12.3.1 Intracellular Ca Alternans -- 12.3.2 Fast Pacing-Induced Complex APD Dynamics -- 12.3.3 EAD-Mediated Nonlinear Dynamics at Slow Heart Rates -- 12.4 Excitation Dynamics on the Tissue and Organ Scales -- 12.4.1 Spatially Discordant APD Alternans -- 12.4.2 Spiral and Scroll Wave Dynamics -- 12.4.3 Chaos Synchronization -- 12.5 Conclusions -- References -- 13 Measures of Spike Train Synchrony: From Single Neurons to Populations -- 13.1 Introduction -- 13.2 Measures of Spike Train Distance -- 13.2.1 Notation -- 13.2.2 The Victor-Purpura Metric -- 13.2.3 The van Rossum Metric -- 13.2.4 The ISI- and the SPIKE-Distance -- 13.2.4.1 The ISI-Distance -- 13.2.4.2 The SPIKE-Distance -- 13.2.5 Entropy-Based Measure -- 13.3 Comparisons -- 13.3.1 The ISI- and the SPIKE-Distance -- 13.3.2 The ISI-Distance and the van Rossum Metric.
13.3.3 The SPIKE-Distance and the Victor-Purpura Metric.
Abstract:
Since modeling multiscale phenomena in systems biology and neuroscience is a highly interdisciplinary task, the editor of the book invited experts in bio-engineering, chemistry, cardiology, neuroscience, computer science, and applied mathematics, to provide their perspectives. Each chapter is a window into the current state of the art in the areas of research discussed and the book is intended for advanced researchers interested in recent developments in these fields. While multiscale analysis is the major integrating theme of the book, its subtitle does not call for bridging the scales from genes to behavior, but rather stresses the unifying perspective offered by the concepts referred to in the title. It is believed that the interdisciplinary approach adopted here will be beneficial for all the above mentioned fields.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Added Author:
Electronic Access:
Click to View