Cover image for Power Systems Signal Processing for Smart Grids.
Power Systems Signal Processing for Smart Grids.
Title:
Power Systems Signal Processing for Smart Grids.
Author:
Ribeiro, Paulo Fernando.
ISBN:
9781118639269
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (443 pages)
Contents:
Power Systems Signal Processing for Smart Grids -- Contents -- About the Authors -- Preface -- Accompanying Websites -- Acknowledgments -- 1 Introduction -- 1.1 Introduction -- 1.2 The Future Grid -- 1.3 Motivation and Objectives -- 1.4 Signal Processing Framework -- 1.5 Conclusions -- References -- 2 Power Systems and Signal Processing -- 2.1 Introduction -- 2.2 Dynamic Overvoltage -- 2.2.1 Sustained Overvoltage -- 2.2.2 Lightning Surge -- 2.2.3 Switching Surges -- 2.2.4 Switching of Capacitor Banks -- 2.3 Fault Current and DC Component -- 2.4 Voltage Sags and Voltage Swells -- 2.5 Voltage Fluctuations -- 2.6 Voltage and Current Imbalance -- 2.7 Harmonics and Interharmonics -- 2.8 Inrush Current in Power Transformers -- 2.9 Over-Excitation of Transformers -- 2.10 Transients in Instrument Transformers -- 2.10.1 Current Transformer (CT) Saturation (Protection Services) -- 2.10.2 Capacitive Voltage Transformer (CVT) Transients -- 2.11 Ferroresonance -- 2.12 Frequency Variation -- 2.13 Other Kinds of Phenomena and their Signals -- 2.14 Conclusions -- References -- 3 Transducers and Acquisition Systems -- 3.1 Introduction -- 3.2 Voltage Transformers (VTs) -- 3.3 Capacitor Voltage Transformers -- 3.4 Current Transformers -- 3.5 Non-Conventional Transducers -- 3.5.1 Resistive Voltage Divider -- 3.5.2 Optical Voltage Transducer -- 3.5.3 Rogowski Coil -- 3.5.4 Optical Current Transducer -- 3.6 Analog-to-Digital Conversion Processing -- 3.6.1 Supervision and Control -- 3.6.2 Protection -- 3.6.3 Power Quality -- 3.7 Mathematical Model for Noise -- 3.8 Sampling and the Anti-Aliasing Filtering -- 3.9 Sampling Rate for Power System Application -- 3.10 Smart-Grid Context and Conclusions -- References -- 4 Discrete Transforms -- 4.1 Introduction -- 4.2 Representation of Periodic Signals using Fourier Series -- 4.2.1 Computation of Series Coefficients.

4.2.2 The Exponential Fourier Series -- 4.2.3 Relationship between the Exponential and Trigonometric Coefficients -- 4.2.4 Harmonics in Power Systems -- 4.2.5 Proprieties of a Fourier Series -- 4.3 A Fourier Transform -- 4.3.1 Introduction and Examples -- 4.3.2 Fourier Transform Properties -- 4.4 The Sampling Theorem -- 4.5 The Discrete-Time Fourier Transform -- 4.5.1 DTFT Pairs -- 4.5.2 Properties of DTFT -- 4.6 The Discrete Fourier Transform (DFT) -- 4.6.1 Sampling the Fourier Transform -- 4.6.2 Discrete Fourier Transform Theorems -- 4.7 Recursive DFT -- 4.8 Filtering Interpretation of DFT -- 4.8.1 Frequency Response of DFT Filter -- 4.8.2 Asynchronous Sampling -- 4.9 The z-Transform -- 4.9.1 Rational z-Transforms -- 4.9.2 Stability of Rational Transfer Function -- 4.9.3 Some Common z-Transform Pairs -- 4.9.4 z-Transform Properties -- 4.10 Conclusions -- References -- 5 Basic Power Systems Signal Processing -- 5.1 Introduction -- 5.2 Linear and Time-Invariant Systems -- 5.2.1 Frequency Response of LTI System -- 5.2.2 Linear Phase FIR Filter -- 5.3 Basic Digital System and Power System Applications -- 5.3.1 Moving Average Systems: Application -- 5.3.2 RMS Estimation -- 5.3.3 Trapezoidal Integration and Bilinear Transform -- 5.3.4 Differentiators Filters: Application -- 5.3.5 Simple Differentiator -- 5.4 Parametric Filters in Power System Applications -- 5.4.1 Filter Specification -- 5.4.2 First-Order Low-Pass Filter -- 5.4.3 First-Order High-Pass Filter -- 5.4.4 Bandstop IIR Digital Filter (The Notch Filter) -- 5.4.5 Total Harmonic Distortion in Time Domain (THD) -- 5.4.6 Signal Decomposition using a Notch Filter -- 5.5 Parametric Notch FIR Filters -- 5.6 Filter Design using MATLAB® (FIR and IIR) -- 5.7 Sine and Cosine FIR Filters -- 5.8 Smart-Grid Context and Conclusions -- References -- 6 Multirate Systems and Sampling Alterations.

6.1 Introduction -- 6.2 Basic Blocks for Sampling Rate Alteration -- 6.2.1 Frequency Domain Interpretation -- 6.2.2 Up-Sampling in Frequency Domain -- 6.2.3 Down-Sampling in Frequency Domain -- 6.3 The Interpolator -- 6.3.1 The Input-Output Relation for the Interpolator -- 6.3.2 Multirate System as a Time-Varying System and Nobles Identities -- 6.4 The Decimator -- 6.4.1 Introduction -- 6.4.2 The Input-Output Relation for the Decimator -- 6.5 Fractional Sampling Rate Alteration -- 6.5.1 Resampling Using MATLAB® -- 6.6 Real-Time Sampling Rate Alteration -- 6.6.1 Spline Interpolation -- 6.6.2 Cubic B-Spline Interpolation -- 6.7 Conclusions -- References -- 7 Estimation of Electrical Parameters -- 7.1 Introduction -- 7.2 Estimation Theory -- 7.3 Least-Squares Estimator (LSE) -- 7.3.1 Linear Least-Squares -- 7.4 Frequency Estimation -- 7.4.1 Frequency Estimation Based on Zero Crossing (IEC61000-4-30) -- 7.4.2 Short-Term Frequency Estimator Based on Zero Crossing -- 7.4.3 Frequency Estimation Based on Phasor Rotation -- 7.4.4 Varying the DFT Window Size -- 7.4.5 Frequency Estimation Based on LSE -- 7.4.6 IIR Notch Filter -- 7.4.7 Small Coefficient and/or Small Arithmetic Errors -- 7.5 Phasor Estimation -- 7.5.1 Introduction -- 7.5.2 The PLL Structure -- 7.5.3 Kalman Filter Estimation -- 7.5.4 Example of Phasor Estimation using Kalman Filter -- 7.6 Phasor Estimation in Presence of DC Component -- 7.6.1 Mathematical Model for the Signal in Presence of DC Decaying -- 7.6.2 Mimic Method -- 7.6.3 Least-Squares Estimator -- 7.6.4 Improved DTFT Estimation Method -- 7.7 Conclusions -- References -- 8 Spectral Estimation -- 8.1 Introduction -- 8.2 Spectrum Estimation -- 8.2.1 Understanding Spectral Leakage -- 8.2.2 Interpolation in Frequency Domain: Single-Tone Signal -- 8.3 Windows -- 8.3.1 Frequency-Domain Windowing.

8.4 Interpolation in Frequency Domain: Multitone Signal -- 8.5 Interharmonics -- 8.5.1 Typical Interhamonic Sources -- 8.5.2 The IEC Standard 61000-4-7 -- 8.6 Interharmonic Detection and Estimation Based on IEC Standard -- 8.7 Parametric Methods for Spectral Estimation -- 8.7.1 Prony Method -- 8.7.2 Signal and Noise Subspace Techniques -- 8.8 Conclusions -- References -- 9 Time-Frequency Signal Decomposition -- 9.1 Introduction -- 9.2 Short-Time Fourier Transform -- 9.2.1 Filter Banks Interpretation -- 9.2.2 Choosing the Window: Uncertainty Principle -- 9.2.3 The Time-Frequency Grid -- 9.3 Sliding Window DFT -- 9.3.1 Sliding Window DFT: Modified Structure -- 9.3.2 Power System Application -- 9.4 Filter Banks -- 9.4.1 Two-Channel Quadrature-Mirror Filter Bank -- 9.4.2 An Alias-Free Realization -- 9.4.3 A PR Condition -- 9.4.4 Finding the Filters from P(z) -- 9.4.5 General Filter Banks -- 9.4.6 Harmonic Decomposition Using PR Filter Banks -- 9.4.7 The Sampling Frequency -- 9.4.8 Extracting Even Harmonics -- 9.4.9 The Synthesis Filter Banks -- 9.5 Wavelet -- 9.5.1 Continuous Wavelet Transform -- 9.5.2 The Inverse Continuous Wavelet Transform -- 9.5.3 Discrete Wavelet Transform (DWT) -- 9.5.4 The Inverse Discrete Wavelet Transform -- 9.5.5 Discrete-Time Wavelet Transform -- 9.5.6 Design Issues in Wavelet Transform -- 9.5.7 Power System Application of Wavelet Transform -- 9.5.8 Real-Time Wavelet Implementation -- 9.6 Conclusions -- References -- 10 Pattern Recognition -- 10.1 Introduction -- 10.2 The Basics of Pattern Recognition -- 10.2.1 Datasets -- 10.2.2 Supervised and Unsupervised Learning -- 10.3 Bayes Decision Theory -- 10.4 Feature Extraction on the Power Signal -- 10.4.1 Effective Value (RMS) -- 10.4.2 Discrete Fourier Transform -- 10.4.3 Wavelet Transform -- 10.4.4 Cumulants of Higher-Order Statistics -- 10.4.5 Principal Component Analysis.

10.4.6 Normalization -- 10.4.7 Feature Selection -- 10.5 Classifiers -- 10.5.1 Minimum Distance Classifiers -- 10.5.2 Nearest Neighbor Classifier -- 10.5.3 The Perceptron -- 10.5.4 Least-Squares Methods -- 10.5.5 Multilayer Perceptron -- 10.5.6 Support Vector Machines -- 10.6 System Evaluation -- 10.6.1 Estimation of the Classification Error Probability -- 10.6.2 Limited-Size Dataset -- 10.7 Pattern Recognition Examples in Power Systems -- 10.7.1 Power Quality Disturbance Classification -- 10.7.2 Load Forecasting in Electric Power Systems -- 10.7.3 Power System Security Assessment -- 10.8 Conclusions -- References -- 11 Detection -- 11.1 Introduction -- 11.2 Why Signal Detection for Electric Power Systems? -- 11.3 Detection Theory Basics -- 11.3.1 Detection on the Bayesian Framework -- 11.3.2 Newman-Pearson Criterion -- 11.3.3 Receiving Operating Characteristics -- 11.3.4 Deterministic Signal Detection in White Gaussian Noise -- 11.3.5 Deterministic Signals with Unknown Parameters -- 11.4 Detection of Disturbances in Power Systems -- 11.4.1 The Power System Signal -- 11.4.2 Optimal Detection -- 11.4.3 Feature Extraction -- 11.4.4 Commonly Used Detection Algorithms -- 11.5 Examples -- 11.5.1 Transmission Lines Protection -- 11.5.2 Detection Algorithms Based on Estimation -- 11.5.3 Saturation Detection in Current Transformers -- 11.6 Smart-Grid Context and Conclusions -- References -- 12 Wavelets Applied to Power Fluctuations -- 12.1 Introduction -- 12.2 Basic Theory -- 12.3 Application of Wavelets for Time-Varying Generation and Load Profiles -- 12.3.1 Fluctuation Analyses with FFT -- 12.3.2 Methodology -- 12.3.3 Load Fluctuations -- 12.3.4 Wind Farm Generation Fluctuations -- 12.3.5 Smart Microgrid -- 12.4 Conclusions -- References -- 13 Time-Varying Harmonic and Asymmetry Unbalances -- 13.1 Introduction -- 13.2 Sequence Component Computation.

13.3 Time-Varying Unbalance and Harmonic Frequencies.
Abstract:
With special relation to smart grids, this book provides clear and comprehensive explanation of how Digital Signal Processing (DSP) and Computational Intelligence (CI) techniques can be applied to solve problems in the power system. Its unique coverage bridges the gap between DSP, electrical power and energy engineering systems, showing many different techniques applied to typical and expected system conditions with practical power system examples. Surveying all recent advances on DSP for power systems, this book enables engineers and researchers to understand the current state of the art and to develop new tools. It presents: an overview on the power system and electric signals, with description of the basic concepts of DSP commonly found in power system problems the application of several signal processing tools to problems, looking at power signal estimation and decomposition, pattern recognition techniques,  detection of the power system signal variations description of DSP in relation to measurements, power quality, monitoring, protection and control, and wide area monitoring a companion website with real signal data, several Matlab codes with examples, DSP scripts and samples of signals for further processing, understanding and analysis Practicing power systems engineers and utility engineers will find this book invaluable, as will researchers of electrical power and energy systems, postgraduate electrical engineering students, and staff at utility companies.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: