Cover image for The Finite Element Method : A Practical Course.
The Finite Element Method : A Practical Course.
Title:
The Finite Element Method : A Practical Course.
Author:
Liu, G.R.
ISBN:
9780080994413
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (457 pages)
Contents:
Half Title -- Title Page -- Copyright -- Dedication -- Biography -- Contents -- Preface to the First Edition -- 1 Computational Modeling -- 1.1 Introduction -- 1.2 Physical problems in engineering -- 1.3 Computational modeling using FEM -- 1.3.1 Modeling of the geometry -- 1.3.2 Meshing -- 1.3.3 Material or medium properties -- 1.3.4 Boundary, initial, and loading conditions -- 1.4 Solution procedure -- 1.4.1 Discrete system equations -- 1.4.2 Equation solvers -- 1.5 Results visualization -- 2 Briefing on Mechanics for Solids and Structures -- 2.1 Introduction -- 2.2 Equations for three-dimensional solids -- 2.2.1 Stress and strain -- 2.2.2 Constitutive equations -- 2.2.3 Dynamic equilibrium equations -- 2.2.4 Boundary conditions -- 2.3 Equations for two-dimensional solids -- 2.3.1 Stress and strain -- 2.3.2 Constitutive equations -- 2.3.3 Dynamic equilibrium equations -- 2.4 Equations for truss members -- 2.4.1 Stress and strain -- 2.4.2 Constitutive equations -- 2.4.3 Dynamic equilibrium equations -- Solution -- 2.5 Equations for beams -- 2.5.1 Stress and strain -- 2.5.2 Constitutive equations -- 2.5.3 Moments and shear forces -- 2.5.4 Dynamic equilibrium equations -- 2.6 Equations for plates -- 2.6.1 Stress and strain -- 2.6.2 Constitutive equations -- 2.6.3 Moments and shear forces -- 2.6.4 Dynamic equilibrium equations -- 2.6.5 Reissner-Mindlin plate -- 2.7 Remarks -- 2.8 Review questions -- 3 Fundamentals for Finite Element Method -- 3.1 Introduction -- 3.2 Strong and weak forms: problem formulation -- 3.3 Hamilton's principle: A weak formulation -- 3.3.1 Hamilton's principle -- 3.3.2 Minimum total potential energy principle -- 3.4 FEM procedure -- 3.4.1 Domain discretization -- 3.4.2 Displacement interpolation -- 3.4.3 Standard procedure for constructing shape functions -- 3.4.3.1 On the inverse of the moment matrix.

3.4.3.2 On the compatibility of the shape functions -- 3.4.3.3 On other means of construct shape functions -- 3.4.4 Properties of the shape functions -- 3.4.5 Formulation of finite element equations in local coordinate system -- 3.4.6 Coordinate transformation -- 3.4.7 Assembly of global FE equation -- 3.4.8 Imposition of displacement constraints -- 3.4.9 Solving the global FE equation -- 3.5 Static analysis -- 3.6 Analysis of free vibration (eigenvalue analysis) -- 3.7 Transient response -- 3.7.1 Central difference algorithm -- 3.7.2 Newmark's method (Newmark, 1959) -- 3.8 Remarks -- 3.8.1 Summary of shape function properties -- 3.8.2 Sufficient requirements for FEM shape functions -- 3.8.3 Recap of FEM procedure -- 3.9 Review questions -- 4 FEM for Trusses -- 4.1 Introduction -- 4.2 FEM equations -- 4.2.1 Shape function construction -- 4.2.2 Strain matrix -- 4.2.3 Element matrices in the local coordinate system -- 4.2.4 Element matrices in the global coordinate system -- 4.2.4.1 Spatial trusses -- 4.2.4.2 Planar trusses -- 4.2.5 Boundary conditions -- 4.2.6 Recovering stress and strain -- 4.3 Worked examples -- Exact solution -- FEM solution -- 4.3.1 Properties of the FEM -- 4.3.1.1 Reproduction property of the FEM -- 4.3.1.2 Convergence property of the FEM -- 4.3.1.3 Rate of convergence of FEM results -- Step 1: Obtaining the direction cosines of the elements -- Step 2: Calculation of element matrices in the global coordinate system -- Step 3: Assembly of global FE matrices -- Step 4: Applying boundary conditions -- Step 5: Solving the FE matrix equation -- 4.4 High order one-dimensional elements -- 4.5 Review questions -- 5 FEM for Beams -- 5.1 Introduction -- 5.2 FEM equations -- 5.2.1 Shape function construction -- 5.2.2 Strain matrix -- 5.2.3 Element matrices -- 5.3 Remarks -- 5.4 Worked examples -- Step 1: Obtaining the element matrices.

Step 2: Applying boundary conditions -- Step 3: Solving the FE matrix equation -- 5.5 Case study: resonant frequencies of micro-resonant transducer -- 5.5.1 Modeling -- 5.5.2 ABAQUS input file -- 5.5.3 Solution process -- 5.5.4 Results and discussion -- 5.5.5 Comparison with ANSYS -- 5.6 Review questions -- 6 FEM for Frames -- 6.1 Introduction -- 6.2 FEM equations for planar frames -- 6.2.1 The idea of superposition -- 6.2.2 Equations in the local coordinate system -- 6.2.3 Equations in the global coordinate system -- 6.3 FEM equations for space frames -- 6.3.1 Equations in the local coordinate system -- 6.3.2 Equations in the global coordinate system -- 6.4 Remarks -- 6.5 Case study: finite element analysis of a bicycle frame -- 6.5.1 Modeling -- 6.5.2 ABAQUS input file -- 6.5.3 Solution processes -- 6.5.4 Results and discussion -- 6.6 Review questions -- 7 FEM for Two-Dimensional Solids -- 7.1 Introduction -- 7.2 Linear triangular elements -- 7.2.1 Field variable interpolation -- 7.2.2 Shape function construction -- 7.2.3 Area coordinates -- 7.2.4 Strain matrix -- 7.2.5 Element matrices -- 7.3 Linear rectangular elements -- 7.3.1 Shape function construction -- 7.3.2 Strain matrix -- 7.3.3 Element matrices -- 7.3.4 Gauss integration -- 7.4 Linear quadrilateral elements -- 7.4.1 Coordinate mapping -- 7.4.2 Strain matrix -- 7.4.3 Element matrices -- 7.4.4 Remarks -- 7.5 Elements for axisymmetric structures -- 7.6 Higher order elements-triangular element family -- 7.6.1 General formulation of shape functions -- 7.6.2 Quadratic triangular elements -- 7.6.3 Cubic triangular elements -- 7.7 Rectangular Elements -- 7.7.1 Lagrange type elements -- 7.7.2 Serendipity type elements -- 7.8 Elements with curved edges -- 7.9 Comments on Gauss integration -- 7.10 Case study: Side drive micro-motor -- 7.10.1 Modeling -- 7.10.2 ABAQUS input file.

7.10.3 Solution process -- 7.10.4 Results and discussion -- 7.11 Review questions -- 8 FEM for Plates and Shells -- 8.1 Introduction -- 8.2 Plate elements -- 8.2.1 Shape functions -- 8.2.2 Element matrices -- 8.2.3 Higher order elements -- 8.3 Shell elements -- 8.3.1 The idea of superposition -- 8.3.2 Elements in the local coordinate system -- 8.3.3 Elements in the global coordinate system -- 8.4 Remarks -- 8.5 Case study: Natural frequencies of the micro-motor -- 8.5.1 Modeling -- 8.5.2 ABAQUS input file -- 8.5.3 Solution process -- 8.5.4 Results and discussion -- 8.6 Case study: Transient analysis of a micro-motor -- 8.6.1 Modeling -- 8.6.2 Abaqus input file -- 8.6.3 Solution process -- 8.6.4 Results and discussion -- 8.7 Review questions -- 9 FEM for 3D Solid Elements -- 9.1 Introduction -- 9.2 Tetrahedron element -- 9.2.1 Strain matrix -- 9.2.2 Element matrices -- 9.3 Hexahedron element -- 9.3.1 Strain matrix -- 9.3.2 Element matrices -- 9.3.3 Using tetrahedrons to form hexahedrons -- 9.4 Higher order elements -- 9.4.1 Tetrahedron elements -- 9.4.2 Brick elements -- 9.4.2.1 Lagrange type elements -- 9.4.2.2 Serendipity type elements -- 9.5 Elements with curved surfaces -- 9.6 Case study: Stress and strain analysis of a quantum dot heterostructure -- 9.6.1 Modeling -- Meshing -- Material properties -- Constraints and boundary conditions -- 9.6.2 ABAQUS input file -- 9.6.3 Solution process -- 9.6.4 Results and discussion -- 9.7 Review questions -- 10 Special Purpose Elements -- 10.1 Introduction -- 10.2 Crack tip elements -- 10.3 Methods for infinite domains -- 10.3.1 Infinite elements formulated by mapping -- 10.3.2 Gradual damping elements -- 10.3.3 Coupling of FEM and the boundary element method -- 10.3.4 Coupling of FEM and the strip element method -- 10.4 Finite strip elements -- 10.5 Strip element method -- 10.6 Meshfree methods -- 10.7 S-FEM.

11 Modeling Techniques -- 11.1 Introduction -- 11.2 CPU time estimation -- 11.3 Geometry modeling -- 11.4 Meshing -- 11.4.1 Mesh density -- 11.4.2 Element distortion -- 11.5 Mesh compatibility -- 11.5.1 Different order of elements -- 11.5.2 Straddling elements -- 11.6 Use of symmetry -- 11.6.1 Mirror symmetry or plane symmetry -- 11.6.2 Axial symmetry -- 11.6.3 Cyclic symmetry -- 11.6.4 Repetitive symmetry -- 11.7 Modeling of offsets -- 11.7.1 Methods for modeling offsets -- 11.7.2 Creation of MPC equations for offsets -- 11.8 Modeling of supports -- 11.9 Modeling of joints -- 11.10 Other applications of MPC equations -- 11.10.1 Modeling of symmetric boundary conditions -- 11.10.2 Enforcement of mesh compatibility -- 11.10.3 Modeling of constraints by rigid body attachment -- 11.11 Implementation of MPC equations -- 11.11.1 Lagrange multiplier method -- 11.11.2 Penalty method -- 11.12 Review questions -- 12 FEM for Heat Transfer Problems -- 12.1 Field problems -- 12.1.1 Heat transfer in a two-dimensional fin -- 12.1.2 Heat transfer in a long two-dimensional body -- 12.1.3 Heat transfer in a one-dimensional fin -- 12.1.4 Heat transfer across a composite wall -- 12.1.5 Torsional deformation of a bar -- 12.1.6 Ideal irrotational fluid flow -- 12.1.7 Acoustic problems -- 12.2 Weighted residual approach for FEM -- 12.3 1D heat transfer problem -- 12.3.1 One-dimensional fin -- 12.3.2 Direct assembly procedure -- 12.3.3 Worked example -- 12.3.4 Remarks -- 12.3.5 Composite wall -- 12.3.6 Worked example -- 12.4 2D heat transfer problem -- 12.4.1 Element equations -- 12.4.2 Triangular elements -- 12.4.3 Rectangular elements -- 12.4.4 Boundary conditions and vector b(e) -- 12.4.5 Point heat source or sink -- 12.5 Summary -- 12.6 Case study: Temperature distribution of heated road surface -- 12.6.1 Modeling -- 12.6.2 ABAQUS input file.

12.6.3 Results and discussion.
Abstract:
Written for practicing engineers and students alike, this book emphasizes the role of finite element modeling and simulation in the engineering design process. It provides the necessary theories and techniques of the FEM in a concise and easy-to-understand format and applies the techniques to civil, mechanical, and aerospace problems. Updated throughout for current developments in FEM and FEM software, the book also includes case studies, diagrams, illustrations, and tables to help demonstrate the material. Plentiful diagrams, illustrations and tables demonstrate the material Covers modeling techniques that predict how components will operate and tolerate loads, stresses and strains in reality Full set of PowerPoint presentation slides that illustrate and support the book, available on a companion website.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Added Author:
Electronic Access:
Click to View
Holds: Copies: