Cover image for Magnetic Processes in Astrophysics : Theory, Simulations, Experiments.
Magnetic Processes in Astrophysics : Theory, Simulations, Experiments.
Title:
Magnetic Processes in Astrophysics : Theory, Simulations, Experiments.
Author:
Rüdiger, Günther.
ISBN:
9783527648955
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (358 pages)
Contents:
Magnetic Processes in Astrophysics -- Contents -- Preface -- 1 Differential Rotation of Stars -- 1.1 Solar Observations -- 1.1.1 The Rotation Law -- 1.1.2 Torsional Oscillations -- 1.1.3 Meridional Flow -- 1.2 Stellar Observations -- 1.2.1 Rotational Evolution -- 1.2.2 Differential Rotation -- 1.3 The Reynolds Stress -- 1.3.1 The Lambda Effect -- 1.3.2 Eddy Viscosities -- 1.4 The Meridional Flow -- 1.4.1 Origin of the Meridional Flow -- 1.4.2 The Differential Temperature -- 1.4.3 Advection-Dominated Solar Dynamo -- 1.5 The Sun -- 1.5.1 Sun without Lambda Effect -- 1.5.2 Sun without Baroclinic Flow -- 1.5.3 Global Simulations -- 1.6 Individual Stars -- 1.6.1 Two Most Stars -- 1.6.2 Young Stars -- 1.7 Dwarfs & Giants -- 1.7.1 M Dwarfs -- 1.7.2 F Stars -- 1.7.3 Giants -- 1.8 Differential Rotation along the Main Sequence -- 2 Radiation Zones: Magnetic Stability and Rotation -- 2.1 The Watson Problem -- 2.1.1 The Stability Equations -- 2.1.2 2D Approximation -- 2.1.3 Stability Maps -- 2.2 The Magnetic Tachocline -- 2.2.1 A Planar Model -- 2.2.2 Magnetic Field Confinement by Meridional Flow -- 2.2.3 Tachocline Model in Spherical Geometry -- 2.3 Stability of Toroidal Fields -- 2.3.1 Equations -- 2.3.2 Nonexistence of 2D Magnetic Instabilities -- 2.3.3 No Diffusion -- 2.3.4 Growth Rates, Drift Rates and Radial Mixing -- 2.4 Stability of Thin Toroidal Field Belts -- 2.4.1 Rigid Rotation -- 2.4.2 Differential Rotation -- 2.4.3 High Fourier Modes -- 2.5 Helicity and Dynamo Action -- 2.5.1 Helicity and Alpha Effect -- 2.5.2 Dynamo Action -- 2.6 Ap Star Magnetism -- 2.7 The Shear-Hall Instability (SHI) -- 3 Quasi-linear Theory of Driven Turbulence -- 3.1 The Turbulence Pressure -- 3.2 The -Tensor -- 3.2.1 Rotating Turbulence -- 3.2.2 Nonrotating Turbulence but Helical Background Fields -- 3.3 Kinetic Helicity and DIV-CURL Correlation -- 3.4 Cross-Helicity.

3.4.1 Theory -- 3.4.2 Simulations and Observations -- 3.5 Shear Flow Electrodynamics -- 3.5.1 Hydrodynamic Stability of Shear Flow -- 3.5.2 The Magnetic-Diffusivity Tensor -- 3.5.3 Dynamos without Stratification -- 3.6 The Alpha Effect -- 3.6.1 Helical-driven Turbulence -- 3.6.2 Shear Flow -- 3.6.3 Shear-Dynamos with Turbulence-Stratification -- 3.6.4 Alpha Effect by Density Stratification -- 3.7 The Current Helicity -- 4 The Galactic Dynamo -- 4.1 Magnetic Fields of Galaxies -- 4.2 Interstellar Turbulence -- 4.2.1 Hydrostatic Equilibrium and Interstellar Turbulence -- 4.2.2 Alpha Effect by Supernova Explosions -- 4.2.3 The Advection Problem -- 4.3 Dynamo Models -- 4.3.1 Linear Models -- 4.3.2 Nonlinear Dynamo Models -- 4.4 Magnetic Instabilities -- 4.4.1 The Seed Field Problem -- 4.4.2 Magnetorotational Instability -- 4.4.3 Tayler Instability -- 5 The Magnetorotational Instability (MRI) -- 5.1 Taylor-Couette Flows -- 5.2 The Stratorotational Instability (SRI) -- 5.2.1 The Angular Momentum Transport -- 5.2.2 Electromotive Force by Magnetized SRI -- 5.3 The Standard Magnetorotational Instability (SMRI) -- 5.3.1 The Equations -- 5.3.2 Nonaxisymmetric Modes -- 5.3.3 Wave Numbers -- 5.3.4 Nonlinear Simulations -- 5.3.5 The Angular Momentum Transport -- 5.4 Diffusive Kepler Disks -- 5.5 MRI with Hall Effect -- 5.6 The Azimuthal MRI (AMRI) -- 5.6.1 The Equations -- 5.6.2 The Instability Map -- 5.6.3 Different Scalings with Pm -- 5.6.4 Nonlinear Results -- 5.6.5 The AMRI Experiment -- 5.7 Helical Magnetorotational Instability (HMRI) -- 5.7.1 From AMRI to HMRI -- 5.7.2 Nonaxisymmetric Modes for small Pm -- 5.7.3 Pseudo-Kepler Rotation -- 5.7.4 The Frequencies -- 5.8 Laboratory Experiment Promise -- 5.8.1 Experimental Results -- 5.8.2 Endplate Effects -- 5.8.3 Promise 2 -- 6 The Tayler Instability (TI) -- 6.1 Stationary Fluids -- 6.2 Experiment Gate.

6.3 Rotating Fluids -- 6.3.1 Rigid Rotation -- 6.3.2 Differential Rotation -- 6.3.3 Eddy Viscosity and Turbulent Diffusivity -- 6.4 The Tayler Generator -- 6.5 Helical Background Fields and Alpha Effect -- 6.5.1 Helical Fields with Weak Axial Current -- 6.5.2 Uniform Electric Current -- 6.5.3 Alpha Effect -- 6.6 TI with Hall Effect -- 7 Magnetic Spherical Couette Flow -- 7.1 Stewartson Layers -- 7.2 Shercliff Layers -- 7.3 Finite Re in an Axial Field -- 7.3.1 Numerics -- 7.3.2 The Maryland Experiment -- 7.3.3 The Princeton Experiment -- 7.4 The Grenoble DTS Experiment -- 7.5 Other Waves and Instabilities -- 7.5.1 Inertial Oscillations -- 7.5.2 Torsional Oscillations -- 7.5.3 Alfvén Waves -- 7.5.4 The Magnetostrophic MRI -- 7.6 Linear Combinations of Axial and Dipolar Fields -- 7.7 Dynamo Action -- References -- Index.
Abstract:
In this work the authors draw upon their expertise in geophysical and astrophysical MHD to explore the motion of electrically conducting fluids, the so-called dynamo effect, and describe the similarities and differences between different magnetized objects. They also explain why magnetic fields are crucial to the formation of the stars, and discuss promising experiments currently being designed to investigate some of the relevant physics in the laboratory. This interdisciplinary approach will appeal to a wide audience in physics, astrophysics and geophysics. This second edition covers such additional topics as small-scale dynamos, while also presenting the latest results and experiments.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: