
Solar Cell Nanotechnology.
Title:
Solar Cell Nanotechnology.
Author:
Tiwari, Atul.
ISBN:
9781118846049
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (540 pages)
Contents:
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1 Current Developments -- 1 Design Considerations for Efficient and Stable Polymer Solar Cells -- 1.1 Introduction -- 1.1.1 Background -- 1.1.2 Theory -- 1.1.2.1 Photovoltaic Processes in Donor-Acceptor (D-A) System -- 1.1.2.2 Equivalent Circuit Diagram of a PV Cell under Illumination -- 1.1.2.3 Parameters Governing Performance of Solar Cells -- 1.2 Role of Interfacial Layer for Efficient BHJ Solar Cells -- 1.2.1 Role of Interfacial Layer on Voc -- 1.2.2 Infl uence on Active Layer Vertical Morphology Based on underneath Interfacial Layer -- 1.2.3 Light Trapping Strategies and Plasmonic Effects for Efficient Light Harvesting -- 1.2.4 Morphology Control of Active Layer and ETL by Processing -- 1.3 Selection of Interfacial Layer for Stable and Longer Lifetime -- 1.3.1 Stability of Active Layer Materials -- 1.3.2 Stability of Metal Electrodes -- 1.3.3 Stability of Transparent Electrode -- 1.3.4 Stability by Electron Transport Layers (ETLs) -- 1.3.5 Stability by Hole Transport Layers (HTLs) -- 1.4 Materials Used as Interfacial Layer -- 1.4.1 Conventional Solar Cell Devices -- 1.4.1.1 Cathode and Electron Transport Layers -- 1.4.1.2 Anode and Hole Transport Layers -- 1.4.2 Inverted Device Structure -- 1.4.2.1 Cathode and Electron Transport Layers -- 1.4.2.2 Anode and Hole Transport Layers -- 1.5 Conclusion and Outlook -- Acknowledgement -- References -- 2 Carbazole-Based Organic Dyes for Dye-Sensitized Solar Cells: Role of Carbazole as Donor, Auxiliary Donor and π-linker -- 2.1 Introduction -- 2.2 Carbazole as a Donor for Dye-Sensitized Solar Cells -- 2.2.1 Carbazole as Donor via C3-Position -- 2.2.2 Carbazole as Donor and Linked through N9-position -- 2.3 Carbazole as a π-Linker -- 2.3.1 Carbazole as a Bridge via C2, C7 Positions -- 2.3.2 Carbazole as a Linker via C3, C6 Positions.
2.4 Carbazole as Auxiliary Donor for DSSC -- 2.4.1 Carbazole as Auxiliary Donor via C2-position -- 2.4.2 Carbazole as Auxiliary Donor via C3-Position -- 2.4.3 Carbazole as Auxiliary Donor via N9-Position -- 2.4.4 Carbazole as Auxiliary Donor via C3, C6-positions -- 2.5 Carbazole as Donor as Well as Linker for DSSC -- 2.6 Conclusion and Outlook -- Acknowledgements -- References -- 3 Colloidal Synthesis of CuInS2 and CuInSe2 Nanocrystals for Photovoltaic Applications -- 3.1 Introduction -- 3.2 Synthesis of CuInS2 and CuInSe2 Nanocrystals -- 3.2.1 Ligand Shell and Colloidal Stability -- 3.2.2 Adjusting the Reactivity of the Precursors -- 3.2.3 Shape Control -- 3.2.4 Crystallographic Structure -- 3.2.5 Composition -- 3.3 Application of Colloidal CuInS2 and CuInSe2 Nanoparticles in Solar Energy Conversion -- 3.3.1 All-Inorganic Solar Cells -- 3.3.2 Organic-Inorganic Hybrid Solar Cells -- 3.3.3 Nanocrystal Sensitized Solar Cells -- 3.4 Conclusion and Outlook -- References -- 4 Two Dimensional Layered Semiconductors: Emerging Materials for Solar Photovoltaics -- 4.1 Introduction -- 4.2 Material Synthesis -- 4.2.1 Chemical Exfoliation -- 4.2.2 CVD Synthesis of 2D Layered Semiconductors MoS2 and WS2 -- 4.2.3 Material Characterization -- 4.3 Photovoltaic Device Fabrication -- 4.3.1 Bulk Heterojunction Solar Cells -- 4.3.2 Schottky Barrier Solar Cells -- 4.3.3 Device Characterization -- 4.4 Microstructural and Raman Spectroscopic Studies of MoS2 and WS2 -- 4.5 Photovoltaic Performance Evaluation -- 4.5.1 BHJ Solar Cells -- 4.5.2 Schottky Barrier Solar Cells -- 4.6 Electronic Transport and Interfacial Recombination -- 4.6.1 BHJ Solar Cells -- 4.6.2 Schottky Barrier Solar Cells -- 4.7 Conclusion and Outlook -- References -- 5 Control of ZnO Nanorods for Polymer Solar Cells -- 5.1 Introduction -- 5.2 Preparation and Characterization of ZnO NRs.
5.2.1 ZnO NRs Prepared by Hydrothermal Method -- 5.2.1.1 Control of HMT and Zn(NO3)2 -- 5.2.1.2 Control of Seed Layer Synthesis and Heating Temperature -- 5.2.2 Morphology Control of ZnO NRs -- 5.2.3 Summary of ZnO NR Growth -- 5.3 Application of ZnO NR in Polymer Solar Cells -- 5.3.1 ZnO-NR/Polymer Solar Cells Based on Vertically-Aligned Zno NRs -- 5.3.2 ZnO NR as a Cathode Buffer Layer in Polymer Solar Cells -- 5.4 Conclusion and Outlook -- References -- Part 2 Noble Approaches -- 6 Dye-Sensitized Solar Cells -- 6.1 Introduction -- 6.2 Background -- 6.2.1 DSCC Operation Principle -- 6.2.2 DSSC Structure -- 6.2.3 DSSC Challenges -- 6.2.4 DSSC Components -- 6.2.4.1 Working Electrode -- 6.2.4.2 Dye Sensitizer -- 6.2.4.3 Electrolyte -- 6.2.4.4 Platinum-Coated Counter Electrode -- 6.2.4.5 Equivalent Circuit of DSSC -- 6.3 DSSC Key Performance Parameters -- 6.4 Device Improvements -- 6.4.1 Experimental -- 6.4.1.1 Working Electrode Preparation -- 6.4.1.2 Cell Assembly -- 6.4.1.3 Electrolyte Injection -- 6.4.2 DSSC Performance Results -- 6.4.2.1 TiO2 Film Thickness Optimization -- 6.4.2.2 Optimization of Nanoparticle Size in TiO2 -- 6.4.2.3 Scaling Down the DSS Cell Size -- 6.5 DSSC Performance with Different Electrolytes -- 6.5.1 Liquid Electrolyte -- 6.5.2 Quasi-Solid Electrolyte -- 6.6 Conclusion and Outlook -- References -- 7 Nanoimprint Lithography for Photovoltaic Applications -- 7.1 Introduction -- 7.2 Soft Lithography -- 7.2.1 Soft Lithography Methods -- 7.2.2 Stamp Materials Used for Nanoimprint Lithography -- 7.3 NIL-Based Techniques for PV -- 7.3.1 Antireflection Layers Prepared with NIL Methods -- 7.3.1.1 Structured Substrates - Outside -- 7.3.1.2 Structured Wafers -- 7.3.1.3 Structured Substrates - Inside -- 7.3.2 NIL-Patterned Films as Etching Masks -- 7.3.3 NIL for Organic Solar Cell Processing.
7.3.4 Plasmonic Films Prepared with NIL Methods -- 7.3.5 Up-Scaling Potential of NIL Processes -- 7.4 Conclusion and Outlook -- References -- 8 Indoor Photovoltaics: Efficiencies, Measurements and Design -- 8.1 Introduction -- 8.2 Indoor Radiation -- 8.2.1 Spectra and Intensities -- 8.3 Maximum Efficiencies -- 8.3.1 Maximum Indoor Efficiencies and Ideal Materials -- 8.3.2 Monochromatic Radiation -- 8.3.3 Intensity Effects -- 8.4 Optimization Strategies -- 8.5 Characterization and Measured Efficiencies -- 8.6 Irradiance Measurements -- 8.7 Characterization -- 8.8 Conclusion and Outlook -- References -- 9 Photon Management in Rare Earth Doped Nanomaterials for Solar Cells -- 9.1 Introduction -- 9.2 Basic Aspects of Solar Cell -- 9.2.1 Mechanism of Efficiency Limitation -- 9.2.2 EQEs of Solar Cells -- 9.2.3 Photon Management Approaches to Enhance the Efficiency of Solar Cell -- 9.3 Up-Conversion Nanomaterials for Solar Cell Application -- 9.3.1 Principles of Photon Up-Conversion -- 9.3.2 Spectroscopy Analysis and Application Demonstration -- 9.4 Down-Conversion Nanomaterials for Solar Cell Application -- 9.4.1 Principles of Photon Down-Conversion -- 9.4.2 Experimental and Spectroscopy Analysis -- 9.4.3 Evaluation -- 9.5 Conclusion and Outlook -- 9.5.1 Solution-Processable Nano-Coating for Broadband Up-Converter or Down-Converter -- 9.5.2 Efficient Photon Management Using Nanoplasmonic Effect -- References -- Part 3 Developments in Prospective -- 10 Advances in Plasmonic Light Trapping in Thin-Film Solar Photovoltaic Devices -- 10.1 Introduction -- 10.1.1 Plasmonics Basics -- 10.1.2 Metamaterials -- 10.2 Theoretical Approaches to Plasmonic Light Trapping Mechanisms in Thin-film PV -- 10.2.1 Optimal Cell Geometry Modeling -- 10.2.2 Optical Properties Simulations -- 10.2.3 Electrical Properties Simulations.
10.3 Plasmonics for Improved Photovoltaic Cells Optical Properties -- 10.3.1 Light Trapping in Bulk Si Solar Cells -- 10.3.2 Plasmonic Light-Trapping Mechanisms for Thin-Film PV Devices -- 10.3.3 Experimental Results -- 10.4 Fabrication Techniques and Economics -- 10.4.1 Lithography Nanofabrication Techniques -- 10.4.2 Physical/Chemical Processing Techniques -- 10.5 Conclusion and Outlook -- Acknowledgements -- References -- 11 Recent Research and Development of Luminescent Solar Concentrators -- 11.1 Introduction -- 11.2 Mechanisms of Power Losses in Luminescent Solar Concentrator -- 11.3 Modeling -- 11.3.1 Thermodynamic Modeling -- 11.3.2 Ray Tracing Modeling -- 11.3.3 Hybrid of Thermodynamic and Ray-Tracing Method -- 11.3.4 Monte Carlo Simulations -- 11.4 Polymer Materials -- 11.5 Luminescent Materials for Luminescent Solar Concentrator -- 11.5.1 Organic Dyes in LSC -- 11.5.2 Quantum Dots -- 11.5.3 Rare Earth -- 11.5.4 Semiconducting Polymer -- 11.6 New Designs of Luminescent Solar Concentrator -- 11.7 Conclusion and Outlook -- References -- 12 Luminescent Solar Concentrators - State of the Art and Future Perspectives -- 12.1 Introduction to the Third Generation of Photovoltaic Systems -- 12.2 Luminescence Solar Concentrators (LSCs) -- 12.2.1 Description of LSC Devices -- 12.2.2 The Efficiency and Losses Mechanism in LSC Devices -- 12.3 Components of LSC Devices -- 12.3.1 Waveguide Slab -- 12.3.2 Fluorophore -- 12.3.2.1 Organic Fluorescent Dyes -- 12.3.2.2 Quantum Dots -- 12.3.2.3 Rare-Earth Materials -- 12.3.3 Solar Cells -- 12.3.4 Experimental Results -- 12.4 Pathways for Improving LSC Effi ciency -- 12.4.1 Escape-Cone losses (PTIR) -- 12.4.2 Absorption Losses -- 12.4.3 Self Absorption Losses -- 12.5 Conclusion and Outlook -- Acknowledgments -- References -- 13 Organic Fluorophores for Luminescent Solar Concentrators -- 13.1 Introduction.
13.2 LSCs: Device Operation and Main Features.
Abstract:
Focusing on the cutting-edge technologies available in the field of photovoltaics, Solar Cell Nanotechnology explores the latest research and development activities related to organic, inorganic, and hybrid materials being used in solar cell manufacturing. Several chapters are dedicated to explaining the fundamentals of photovoltaics and nanomaterials utilized in the manufacturing of solar cells. Other essential subjects, such as microcontact printing, plasmonic light trapping, outdoor and indoor efficiency, luminescent solar concentrators, and photon management in photovoltaics, are comprehensively reviewed. Written for a broad audience, this is an essential book for engineers, nanotechnologists, and materials scientists.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View