
Functional Metal Oxides : New Science and Novel Applications.
Title:
Functional Metal Oxides : New Science and Novel Applications.
Author:
Ogale, Satishchandra Balkrishna.
ISBN:
9783527654895
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (500 pages)
Contents:
Functional Metal Oxides -- Contents -- Preface -- List of Contributors -- Part I Magnetic Oxides -- 1 Introduction to Magnetic Oxides -- 1.1 Oxide Structures and Crystal Chemistry -- 1.2 Oxide Growth -- 1.2.1 Polycrystalline Materials -- 1.2.1.1 Precipitation -- 1.2.1.2 Sol-Gel -- 1.2.1.3 Solid-State Reaction -- 1.2.1.4 Combustion Synthesis -- 1.2.2 Single Crystals -- 1.2.2.1 Bridgeman Method -- 1.2.2.2 Czochralski Method -- 1.2.2.3 Zone Melting (Image Furnace) -- 1.2.2.4 Flux Method -- 1.2.2.5 Chemical Vapor Reactions -- 1.2.3 Thin Films -- 1.2.3.1 Physical Methods -- 1.2.3.2 Chemical Methods -- 1.3 Magnetic Properties of 3d and 4f Ions -- 1.4 Magnetic Interactions in Oxides -- 1.4.1 Superexchange -- 1.4.2 Double Exchange -- 1.4.3 Antisymmetric Exchange -- 1.4.4 Direct Exchange -- 1.4.5 Orbital Order -- 1.4.6 Charge Order -- 1.5 Concentrated Magnetic Oxides -- 1.5.1 αFe2O3 -- 1.5.2 Fe3O4 -- 1.5.3 NiO -- 1.5.4 Y3Fe5O12 -- 1.5.5 SrFe12O19 -- 1.5.6 (La,Sr)MnO3 -- 1.5.7 CrO2 -- 1.5.8 Tl2Mn2O7 -- 1.6 Dilute Magnetic Oxides -- 1.6.1 Magnetism of Oxide Surfaces, Interfaces, and Defects -- 1.7 Conclusions -- Acknowledgments -- References -- 2 Magnetic/Multifunctional Double Perovskite Oxide Thin Films -- 2.1 Introduction -- 2.2 Thin-Film Deposition -- 2.2.1 The Requirement for Epitaxy -- 2.2.2 Interfaces, Strain, and Defects -- 2.2.3 Pulsed Laser Deposition -- 2.2.4 Control of Deposition Parameters -- 2.2.5 Stoichiometry Control with Volatile Constituents -- 2.2.6 Control of Defect Concentration -- 2.3 Structure and Morphology -- 2.3.1 Phase and Epitaxy: X-Ray -- 2.3.2 Surface Morphology: Scanning Electronic Microscopy and Atomic Force Microscopy -- 2.3.3 Interfaces and Defects: Transmission Electron Microscopy -- 2.4 Electronic Structure -- 2.4.1 Raman Spectroscopy -- 2.4.2 X-Ray Absorption Spectroscopy -- 2.4.3 X-Ray Photoemission Spectroscopy.
2.5 Physical Properties -- 2.5.1 Magnetization -- 2.5.1.1 Ferromagnetic Resonance -- 2.5.1.2 Kerr Spectroscopy -- 2.5.1.3 Superconducting Quantum Interference Device -- 2.5.1.4 X-Ray Magnetic Circular Dichroism -- 2.5.2 Transport Properties -- 2.5.2.1 DC Transport -- 2.5.2.2 DC Transport in Magnetic Field -- 2.5.2.3 AC Transport -- 2.5.2.4 AC Transport in Magnetic Field -- 2.6 Applications of Multifunctional Oxides -- 2.7 Future Directions -- Acknowledgments -- References -- Part II Dopants, Defects and Ferromagnetism in Metal Oxides -- 3 Magnetic Oxide Semiconductors: on the High-Temperature Ferromagnetism in TiO2- and ZnO-Based Compounds -- 3.1 Introduction -- 3.1.1 Diluted Magnetic Semiconductors -- 3.1.2 Magnetic Oxide Semiconductors -- 3.1.2.1 Development of Magnetic Oxide Semiconductor -- 3.1.2.2 Combinatorial Exploration of Magnetic Oxide Semiconductors -- 3.1.2.3 Recent Status -- 3.2 Properties of (Ti,Co)O2 -- 3.2.1 Thin Film Growth -- 3.2.2 Transport Properties -- 3.2.3 Magnetic Properties -- 3.2.3.1 Magnetization -- 3.2.3.2 Magnetic Circular Dichroism -- 3.2.3.3 Anomalous Hall Effect -- 3.2.4 Electric Field Effect -- 3.2.4.1 Electric Field Effect on Ferromagnetic Semiconductors -- 3.2.4.2 Electric Field Effect on Ferromagnetism in Co-Doped TiO2 -- 3.2.5 A Principal Role of Electron Carriers on Ferromagnetism -- 3.2.6 Spectroscopic Properties -- 3.2.6.1 Photoemission Spectroscopy -- 3.2.6.2 X-Ray Magnetic Circular Dichroism -- 3.3 Properties of Transition-Metal-Doped ZnO -- 3.3.1 Structural Properties -- 3.3.2 Magnetic and Electronic Properties -- 3.3.2.1 Magnetization -- 3.3.2.2 X-Ray Magnetic Circular Dichroism -- 3.3.2.3 Magnetooptical Effect -- 3.3.2.4 Anomalous Hall Effect -- 3.3.2.5 A Role of Carriers on Ferromagnetism -- 3.4 Discussion -- 3.4.1 Remarks on Sample Characterizations -- 3.4.2 Origin of High-Temperature Ferromagnetism.
3.5 Summary and Outlooks -- Acknowledgments -- References -- 4 Effect of Ta Alloying on the Optical, Electronic, and Magnetic Properties of TiO2 Thin Films -- 4.1 Introduction -- 4.1.1 Properties of TiO2 -- 4.2 Ta Substitution in TiO2: Doping or Alloying? -- 4.2.1 The PLD Phase Diagram -- 4.2.2 Optical and Electronic Properties -- 4.3 Diluted Magnetic Semiconductors (DMS) -- 4.4 Defect-Mediated Ferromagnetism -- 4.5 Magnetic Impurity Analysis in Ti1-x TaxO2 System -- 4.6 Defect-Induced Ferromagnetism in Ti1-x TaxO2 Film -- 4.6.1 Ferromagnetic Properties -- 4.6.2 Intrinsic versus Extrinsic FM -- 4.6.2.1 SXMCD -- 4.6.3 OMCD -- 4.7 First-Principles Spin-Polarized GGA + U Calculations -- 4.7.1 XPS and XAS: Determination of Intrinsic Defects -- 4.8 Mechanism of Defect-Mediated FM -- 4.9 Optimization of Ferromagnetism -- 4.9.1 Influence of Film Growth Temperature and Pressure -- 4.9.2 Influence of Ta Concentration -- 4.10 Outlook for Defect-Mediated Properties of Ti1-x TaxO2 -- References -- 5 Defect-Induced Optical and Magnetic Properties of Colloidal Transparent Conducting Oxide Nanocrystals -- 5.1 Introduction -- 5.2 Colloidal Transition-Metal-Doped Transparent Conducting Oxide Nanocrystals -- 5.2.1 Doping TCO NCs -- 5.2.2 Phase transformation of TCO NCs -- 5.2.3 Electrical and Magnetic Properties of Doped TCO Nanocrystals -- 5.2.3.1 Electrical Properties of TCO Nanocrystals -- 5.2.3.2 Magnetic Properties of Doped TCO NCs -- 5.3 Native Defects in Colloidal Transparent Conducting Oxide Nanocrystals -- 5.3.1 Type of Native Defects in TCO NCs and Photoluminescence Involving Oxygen Vacancy: ZnO Nanocrystals -- 5.3.2 Donor-Acceptor Pair Recombination: Ga2O3 Nanocrystals -- 5.4 Summary and Outlook -- Acknowledgments -- References -- Part III Ferroelectrics.
6 Structure-Property Correlations in Rare-Earth-Substituted BiFeO3 Epitaxial Thin Films at the Morphotropic Phase Boundary -- 6.1 Introduction -- 6.2 Combinatorial Discovery of a MPB in Sm-substituted BiFeO3 (Sm-BFO) -- 6.3 Structural Evolution across the MPB in Sm-BFO -- 6.4 Universal Behavior in RE-Substituted BFO -- 6.5 Structural Fingerprint of MPB in RE-Substituted BFO -- 6.6 Chemical-Substitution-Induced Polarization Rotation in BFO -- 6.7 Concluding Remarks and Future Perspectives -- Acknowledgments -- References -- 7 Antiferroelectricity in Oxides: a Reexamination -- 7.1 Introduction -- 7.2 Definition and Characteristic Properties -- 7.3 Microscopic Origins of Macroscopic Behavior -- 7.4 Antiferroelectric Materials: Structure and Properties -- 7.5 Relation to Alternative Ferroelectric Phases -- 7.6 Antiferroelectricity in Thin Films -- 7.7 Properties for Applications -- 7.8 Prospects -- Acknowledgments -- References -- Part IV Multiferroics -- 8 Probing Nanoscale Electronic Conduction in Complex Oxides -- 8.1 Scanning-Probe-Based Transport Measurements -- 8.2 Domain Wall Conductivity -- 8.3 Photovoltaic Effects at Domain Walls -- 8.4 Local Characterization of Doped Oxides and Defects -- 8.5 Local Electronic Probing of Oxide Interfaces -- 8.6 Nanoscale Electronic Properties of CMR Manganites -- 8.7 Future Directions -- References -- 9 Multiferroics with Magnetoelectric Coupling -- 9.1 Introduction: Ferroic Materials -- 9.2 Principles of Symmetry Analysis -- 9.3 Magnetoelectric Couplings and a Landau-Like Theory -- 9.4 Chemical Considerations -- 9.5 Classification of Multiferroics -- 9.6 Multiferroic Materials and Mechanisms -- 9.6.1 Lone-Pair Chemistry and d Magnetism -- 9.6.2 Phonon-Driven Improper Ferroelectricity -- 9.6.3 Improper Ferroelectricity from Charge Ordering.
9.6.4 Magnetically Driven Improper Ferroelectricity (Type II Multiferroics) -- 9.6.5 Ferroelectricity from Collinear Magnetism (Exchange Striction) -- 9.6.6 Phonon-Mediated Linear ME Coupling -- 9.7 Microscopic Mechanisms of Magnetic Ferroelectricity: Type II Multiferroics -- 9.8 Domains and Metal-Insulator Transition -- Summary -- References -- Part V Interfaces and Magnetism -- 10 Device Aspects of the SrTiO3-LaAlO3 Interface -- Basic Properties, Mobility, Nanostructuring, and Potential Applications -- 10.1 Introduction -- 10.2 The LaAlO3/SrTiO3 Interface: Key Characteristics and Understanding -- 10.3 Charge-Carrier Mobility -- 10.4 Micro/Nanostructuring -- 10.5 Electric Field Gating -- 10.6 Applications -- Acknowledgments -- References -- 11 X-Ray Spectroscopic Studies of Conducting Interfaces between Two Insulating Oxides -- 11.1 Introduction -- 11.2 Photoemission Measurements of Interfaces -- 11.3 Interfaces between a Mott Insulator and a Band Insulator: LaAlO3/LaVO3 and LaTiO3/SrTiO3 -- 11.4 Interfaces between Two Band Insulators: LaAlO3/SrTiO3 -- 11.5 Summary -- References -- 12 Interfacial Coupling between Oxide Superconductors and Ferromagnets -- 12.1 Introduction -- 12.2 Experimental Results -- 12.2.1 Spin Injection -- 12.2.2 Proximity Effects -- 12.2.2.1 Critical Temperature -- 12.2.2.2 SNS Junction Critical Current Measurements -- 12.2.2.3 Andreev Reflection -- 12.2.3 Spin Transport -- 12.3 Materials Considerations -- 12.3.1 Growth Texture -- 12.3.2 Lattice-Mismatch Strain -- 12.3.3 Charge Transfer -- 12.4 Conclusions -- References -- Part VI Devices and Applications -- 13 Metal-Oxide Nanoparticles for Dye-Sensitized Solar Cells -- 13.1 TiO2: Polymorphism, Optoelectronic Properties, and Bandgap Engineering -- 13.2 Principle and Basis of Dye-Sensitized Solar Cell (DSC) Technology.
13.3 Progress in TiO2 Engineering for Improved Charge-Collection Efficiency and Light Confinement.
Abstract:
Functional oxides are used both as insulators and metallic conductors in key applications across all industrial sectors. This makes them attractive candidates in modern technology ? they make solar cells cheaper, computers more efficient and medical instrumentation more sensitive. Based on recent research, experts in the field describe novel materials, their properties and applications for energy systems, semiconductors, electronics, catalysts and thin films. This monograph is divided into 6 parts which allows the reader to find their topic of interest quickly and efficiently. * Magnetic Oxides * Dopants, Defects and Ferromagnetism in Metal Oxides * Ferroelectrics * Multiferroics * Interfaces and Magnetism * Devices and Applications This book is a valuable asset to materials scientists, solid state chemists, solid state physicists, as well as engineers in the electric and automotive industries.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View