
Molecular Sensors and Nanodevices : Principles, Designs and Applications in Biomedical Engineering.
Title:
Molecular Sensors and Nanodevices : Principles, Designs and Applications in Biomedical Engineering.
Author:
Zhang, John X J.
ISBN:
9781455776764
Personal Author:
Physical Description:
1 online resource (512 pages)
Series:
Micro and Nano Technologies
Contents:
Front Cover -- Molecular Sensors and Nanodevices -- Copyright Page -- Contents -- About the Authors -- Preface -- Acknowledgement -- 1 Introduction to Molecular Sensors -- 1.1 Introduction -- 1.2 Principles of Molecular Sensors -- 1.2.1 Definition of Molecular Sensors -- Capture and Recognition -- Transduction -- Measurement and Analysis -- 1.2.2 Applications of Molecular Sensors -- 1.2.3 Model of a Molecular Sensor -- Capture and Recognition -- Transduction -- Measurement and Analysis -- 1.2.4 Example of Molecular Sensor 1: Immunosensor Based on Field Effect Transistor -- Capture and Recognition Elements -- Transducer -- Measurement and Analysis -- 1.2.5 Example of Molecular Sensor 2: Animal Olfactory System -- 1.3 Capture and Recognition Elements in Molecular Sensors -- 1.3.1 Antibody-Antigen Binding -- Antibody Overview -- Antibody-Antigen Binding -- Immunoassays -- 1.3.2 DNA as a Recognition Element -- Discovery of DNA -- DNA Structure and Characteristics -- RNA Function -- DNA Hybridization -- Oligonucleotides -- Nucleic Acid Sensors -- 1.3.3 Aptamers -- Aptamer Selection Process -- Example Process: Bead Based Selection -- 1.4 Transduction Mechanisms -- 1.4.1 Electrical Transduction -- Optical Transduction -- Mechanical Transduction -- 1.4.2 Sensitivity of a Transducer -- Responsivity -- Noise in a Sensing System -- Sensitivity -- Thermal Noise -- Example 1 -- Example 2 -- Example 3 -- 1.5 Performance of Molecular Sensors -- 1.6 Animals as Molecular Sensors -- 1.6.1 Sensitivity of Animal Olfactory Systems -- Canine Olfactory System -- Insect Olfactory System -- 1.6.2 Applications of Animal Molecular Sensors -- Explosive Detection -- Canine Detection of Explosives -- Pouched Rats for the Detection of Landmines -- Honeybees for the Detection of Landmines -- Disease Detection -- Canines for Cancer Detection.
Pouched Rats for the Detection of Tuberculosis -- Other Applications -- Canine Detection of Pirated DVDs -- Canine Detection of Bed Bugs -- 1.6.3 Discussion on Animals as Molecular Sensors -- 1.7 Conclusion -- Problems -- P1.1 Molecular Sensor -- P1.2 Molecular Sensor -- P1.3 Recognition Element -- P1.4 Basics of Molecular Sensing -- P1.5 Antibodies -- P1.6 Immunosensing -- P1.7 DNA Biosensor -- P1.8 DNA Basics -- P1.9 DNA Basics -- P1.10 DNA Basics -- P1.11 DNA Basics -- P1.12 Thermal Noise -- P1.13 Thermal Noise, Responsivity and Sensitivity -- P1.14 Sensitivity of a Force Sensor -- P1.15 Animals as Molecular Sensors -- References -- Further Reading -- 2 Fundamentals of Nano/Microfabrication and Effect of Scaling -- 2.1 Introduction -- 2.2 Scaling in Molecular Sensors -- 2.3 Microfabrication Basics -- 2.3.1 Silicon as a Material for Microfabrication -- Silicon Crystal Structure -- 2.3.2 Photolithography -- Process of Photolithography -- Resolution of Photolithography -- Contact and Proximity Exposure -- Projection Exposure -- 2.3.3 Deposition -- Spin Coating -- Thermal Oxidation -- Evaporation -- E-beam Evaporation -- Resistive Heat (Joule Heat) Evaporation -- Problems Associated with Evaporation -- Sputtering -- Chemical Vapor Deposition -- Polysilicon -- Amorphous silicon -- Silicon Dioxide -- Silicon Nitride -- Electroplating -- Chemical Reaction -- Fabrication of Electroplated Microstructures -- 2.3.4 Etching -- Wet Etching -- Selectivity -- Isotropic Wet Etching -- Silicon Anisotropic Wet Etching -- Dry Etching -- Deep Reactive-Ion Etching (DRIE) -- 2.3.5 Lift Off -- Sacrificial Layer -- Final Layer -- 2.3.6 Doping -- Thermal Diffusion -- Ion Implantation -- 2.4 Micro-electro-mechanical Systems (MEMS) -- 2.4.1 Bulk Micromachining -- Piezoresistivity -- Pressure Sensor -- 2.4.2 Surface Micromachining -- Surface Micromachining.
Electrostatic Actuators -- Pull-in Limit -- Nonlinear Effect -- Examples of Micro Electrostatic Actuators -- 2.5 Soft Lithography -- 2.5.1 Microcontact Printing -- Stamp Preparation -- Inking -- Stamping -- Materials -- 2.5.2 Soft Lithography-Based Microfabrication -- Replica Molding -- Microtransfer Molding -- Embossing Techniques -- Injection Molding -- 2.5.3 Immobilization and Patterning Techniques for Biomolecules -- Immobilization Techniques -- Adsorption -- Thiol-Gold Bonding -- Avidin-Biotin Interactions -- Other Materials for Surface Treatment -- Inkjet Printing -- Photolithography and Direct Photochemistry -- Scanning Probe Microscopy (SPM) for Biomolecule Patterning -- 2.6 "Top Down "and "Bottom Up" Approaches -- 2.7 Conclusion -- Problems -- P2.1 Effect of Scaling -- P2.2 Crystal Planes and Miller Index -- P2.3 Microfabrication -- P2.4 Photolithography -- P2.5 Silicon Micromachining -- P2.6 Patterning of Metal Layers -- P2.7 Electroplating -- P2.8 Wet Anisotropic Etching of Silicon -- P2.9 Microelectromechanical Systems -- P2.10 Micro Electrostatic Actuators -- P2.11 Micro Electrostatic Actuators -- P2.12 Scaling and Micro Actuators -- P2.13 Soft Lithography -- P2.14 Soft Lithography -- P2.15 Top Down and Bottom Up Fabrication -- References -- Further Reading -- 3 Microfluidics and Micro Total Analytical Systems -- 3.1 Introduction -- 3.2 Microfluidics Fundamentals -- 3.2.1 Diffusion -- 3.2.2 Laminar Flow and the Hagen-Poiseuille Equation -- Viscosity -- Laminar Flow in a Pipe -- Hagen-Poiseuille Equation -- 3.2.3 Reynolds Number and Scaling Law -- Navier-Stokes Equations -- Reynolds Number -- 3.3 Microfluidics for Molecular Sensors -- 3.3.1 Microfluidic Device Basics -- Fabrication of Microfluidic Devices -- Pumping -- Mixing in Microchannels -- Diffusion and Scale Effect -- Mixing in Microchannels.
3.3.2 Microfluidic Cell Separation and Detection -- Flow Cytometry -- Principles -- Commercially Available Systems -- Microfluidic Flow Cytometry -- Affinity Mediated Separation -- Principle -- Applications -- Magnetic Cell Separation -- Principle -- Application -- Electrophoresis -- Principle -- Applications -- Cell Separation Utilizing Mechanical Properties -- Acoustic Separation -- Separation Based on Stiffness -- Separation Based on Size -- 3.3.3 Microfluidic Devices for DNA Analysis -- Microfluidic Devices for DNA Amplification -- Principles -- Applications -- Implementation -- The Fluidigm BioMark System -- DNA Microarray -- Working Principle -- Implementation -- Applications -- Microfluidic Devices for DNA Separation -- Microfluidic Electrophoresis -- Commercial Products -- DNA Sequencing -- Sanger Sequencing -- Microfluidic Systems for Sanger Sequencing -- Nanopore Based Sequencing -- Problems -- P3.1 Diffusion -- P3.2 Spindle Viscometer -- P3.3 Hagen-Poiseuille Equation -- P3.4 Reynolds Number -- P3.5 Reynolds Number -- P3.6 Laminar Flow -- P3.7 Laminar Flow -- P3.8 Microfluidic Pump -- P3.9 Hagen-Poiseuille Equation -- P3.10 Hagen-Poiseuille Equation -- P3.11 Immunomagnetic Separation -- P3.12 Circulating Tumor Cells -- P3.13 Gel Electrophoresis -- P3.14 PCR -- P3.15 PCR -- References -- Further Reading -- 4 Electrical Transducers -- 4.1 Introduction -- 4.2 Electrochemical Sensors -- 4.2.1 Principles of Electrochemical Measurements -- Redox Reaction -- Electrochemical Cell -- The Electrode Potential -- Reference Electrode -- The Nernst Equation -- The electrical double layer -- 4.2.2 Applications of Electrochemical Sensors -- Potentiometric Sensors -- Voltammetric and Amperometric Sensors -- Conductometric Sensors -- Capacitive Sensors -- Glucose Sensors -- 4.3 FET-Based Molecular Sensors -- 4.3.1 Semiconductor Basics.
Electrical Conductivity -- Charge Carriers and Mobility -- Electrons and Holes -- Doping -- p-Type Doping -- n-Type Doping -- p-n Junction -- p-n Diode -- MOSFET -- Flat Band -- Accumulation -- Depletion -- Inversion -- 4.3.2 Silicon FET-Based Molecular Sensors -- Ion Selective FET Sensors -- Fabrication and Implementation -- Silicon FET Sensors for Biosensing Applications -- 4.3.3 Organic Transistor-Based Sensors -- 4.3.4 Nanowire Based FET Sensors -- Silicon Nanowire-Based FET Sensor -- Polymer Nanowire FET Sensors -- 4.4 Carbon Nanotubes and Graphene-Based Sensors -- 4.4.1 CNT-Based Molecular Sensors -- Carbon Nanotubes -- Synthesis of Carbon Nanotubes -- Carbon Nanotube-Based Molecular Sensors -- 4.4.2 Graphene-Based Molecular Sensors -- Properties of Graphene -- Synthesis of Graphene -- Graphene-Based Gas Sensors -- Graphene for Glucose Sensing -- Graphene-Based DNA Sensing -- 4.5 Conclusion -- Problems -- P4.1 Potential of Electrodes -- P4.2 pH Meter -- P4.3 Glucose Sensor -- P4.4 Glucose Sensor -- P4.5 Electrochemical Sensors -- P4.6 Glucose Sensor -- P4.7 Semiconductor Basics -- P4.8 Charge Carriers, Conductivity, Fermi level -- P4.9 Charge Carriers, Conductivity, Fermi level -- P4.10 Temperature Dependence -- P4.11 FET-Based Molecular Sensors -- P4.12 Nanomaterials -- P4.13 Carbon Nanotubes -- P4.14 Graphene-Based Molecular Sensors -- References -- Further Reading -- 5 Optical Transducers -- 5.1 Introduction -- 5.2 Basic EM Theory -- 5.2.1 Maxwell's Equations -- 5.2.2 Wave Equation -- 5.2.3 Phasor Notation -- 5.2.4 Interference -- 5.2.5 Polarization, Incidence and Reflection of light -- TM and TE Modes -- Snell's Law, Total Internal Reflection -- Fresnel Equations -- Brewster's Angle -- 5.2.6 Evanescent Field -- 5.3 Waveguide-Based Molecular Sensors -- 5.3.1 Introduction -- 5.3.2 Principles of Wave Propagation in Waveguide -- Waveguide Modes.
Light Coupling.
Abstract:
With applications ranging from medical diagnostics to environmental monitoring, molecular sensors (also known as biosensors, chemical sensors, or chemosensors), along with emerging nanotechnologies offer not only valuable tools but also unlimited possibilities for engineers and scientists to explore the world. New generation of functional microsystems can be designed to provide a variety of small scale sensing, imaging and manipulation techniques to the fundamental building blocks of materials. This book provides comprehensive coverage of the current and emerging technologies of molecular sensing, explaining the principles of molecular sensor design and assessing the sensor types currently available. Having explained the basic sensor structures and sensing principles, the authors proceed to explain the role of nano/micro fabrication techniques in molecular sensors, including MEMS, BioMEMS, MicroTAS among others. The miniaturization of versatile molecular sensors opens up a new design paradigm and a range of novel biotechnologies, which is illustrated through case studies of groundbreaking applications in the life sciences and elsewhere. As well as the techniques and devices themselves, the authors also cover the critical issues of implantability, biocompatibility and the regulatory framework. The book is aimed at a broad audience of engineering professionals, life scientists and students working in the multidisciplinary area of biomedical engineering. It explains essential principles of electrical, chemical, optical and mechanical engineering as well as biomedical science, intended for readers with a variety of scientific backgrounds. In addition, it will be valuable for medical professionals and researchers. An online tutorial developed by the authors provides learning reinforcement for students and professionals alike. Reviews of
state-of-the-art molecular sensors and nanotechnologies Explains principles of sensors and fundamental theories with homework problems at the end of each chapter to facilitate learning Demystifies the vertical integration from nanomaterials to devices design Covers practical applications the recent progress in state-of-the-art sensor technologies Includes case studies of important commercial products Covers the critical issues of implantability, biocompatibility and the regulatory framework.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Added Author:
Electronic Access:
Click to View