
Modeling Methodology for Physiology and Medicine.
Title:
Modeling Methodology for Physiology and Medicine.
Author:
Carson, Ewart.
ISBN:
9780124095250
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (589 pages)
Contents:
Front Cover -- Modelling Methodology for Physiology and Medicine -- Copyright Page -- Contents -- Preface -- Preface to the Second Edition -- List of Contributors -- 1 An Introduction to Modelling Methodology -- 1.1 Introduction -- 1.2 The Need for Models -- 1.2.1 Physiological Complexity -- 1.2.2 Models and Their Purposes -- 1.3 Approaches to Modelling -- 1.3.1 Modelling the Data -- 1.3.2 Modelling the System -- 1.4 Simulation -- 1.5 Model Identification -- 1.5.1 A Framework for Identification -- 1.5.2 Identification of Parametric Models -- 1.5.3 Identification of Nonparametric Models -- 1.6 Model Validation -- Reference -- 2 Control in Physiology and Medicine -- 2.1 Introduction -- 2.2 Modelling for Control System Design and Analysis -- 2.2.1 Sets of Ordinary Differential Equations -- 2.2.2 Linear State Space Models -- 2.2.3 Transfer Functions -- 2.2.3.1 Pole-Zero Cancellation -- 2.2.3.2 Right-Half-Plane Zeros and Time Delays -- 2.2.4 Discrete-Time State Space Models -- 2.2.5 Discrete Auto-Regressive Models -- 2.2.6 Step and Impulse Response Models -- 2.2.7 System Identification -- 2.3 Block Diagram Analysis -- 2.3.1 Continuous-Time Block Diagram Analysis -- 2.3.2 Discrete-Time Block Diagram Analysis -- 2.4 Proportional-Integral-Derivative Control -- 2.4.1 PID Tuning Techniques -- 2.4.1.1 Ziegler-Nichols Closed-Loop Oscillations -- 2.4.1.2 Frequency Response -- 2.4.1.3 Cohen-Coon -- 2.4.1.4 Internal Model Control-Based PID -- 2.4.1.5 Ad hoc -- 2.4.2 Discrete-Time PID -- 2.5 Model Predictive Control -- 2.6 Other Control Algorithms -- 2.6.1 Fuzzy Logic -- 2.6.2 Expert Systems -- 2.6.3 Artificial Neural Networks -- 2.6.4 On-Off -- 2.7 Application Examples -- 2.7.1 Type 1 Diabetes: Blood Glucose Control -- 2.7.1.1 Models for Simulation -- 2.7.1.2 Models for Control -- 2.7.1.3 Control -- 2.7.1.3.1 On-Off.
2.7.1.3.2 Proportional-Integral-Derivative (PID) -- 2.7.1.3.3 Model Predictive Control (MPC) -- 2.7.1.3.4 Fuzzy Logic -- 2.7.2 Intensive Care Unit Blood Glucose Control -- 2.7.2.1 Models -- 2.7.2.2 Control -- 2.7.3 Blood Pressure Control Using Continuous Drug Infusion -- 2.7.3.1 Models -- 2.7.3.2 Control -- 2.7.4 Control of Anesthesia and Sedation -- 2.7.4.1 Models -- 2.7.4.2 Open-Loop Control -- 2.7.4.3 Closed-Loop Control -- 2.8 Summary -- References -- 3 Deconvolution -- 3.1 Problem Statement -- 3.2 Difficulty of the Deconvolution Problem -- 3.2.1 Dealing with Physiological Systems -- 3.2.2 A Classification of the Deconvolution Approaches -- 3.3 The Regularization Method -- 3.3.1 Deterministic Viewpoint -- 3.3.1.1 The Choice of the Regularization Parameter -- 3.3.1.2 The Virtual Grid -- 3.3.1.3 Assessment of Confidence Limits -- 3.3.2 Stochastic Viewpoint -- 3.3.2.1 Confidence Limits -- 3.3.2.2 Statistically Based Choice of the Regularization Parameter -- 3.3.3 Numerical Aspects -- 3.3.4 Constrained Deconvolution -- 3.4 Other Deconvolution Methods -- 3.5 Conclusions -- References -- 4 Structural Identifiability of Biological and Physiological Systems -- 4.1 Introduction -- 4.2 Background and Definitions -- 4.2.1 The System -- 4.2.2 Structural Identifiability -- 4.3 Identifiability and Differential Algebra -- 4.3.1 The Problem -- 4.3.2 The Characteristic Set -- 4.3.3 A Benchmark Model -- 4.4 The Question of Initial Conditions -- 4.4.1 An Example -- 4.4.2 The Role of Accessibility -- 4.5 Identifiability of Some Nonpolynomial Models -- 4.6 A Case Study -- 4.7 Conclusion -- References -- 5 Parameter Estimation -- 5.1 Problem Statement -- 5.2 Fisherian Parameter Estimation Approaches -- 5.2.1 Least Squares -- 5.2.2 Maximum Likelihood -- 5.2.3 Analysis of the Residuals -- 5.2.4 Precision of the Estimates -- 5.2.5 Model Selection Among Candidates.
5.2.6 Case Study -- 5.3 Bayesian Parameter Estimation Approaches -- 5.3.1 Fundamentals -- 5.3.2 MAP Estimator in the Gaussian Case -- 5.3.2.1 Derivation of the MAP Estimator -- 5.3.2.2 Case Study -- 5.3.3 Prior Distribution in Bayesian Analysis -- 5.3.4 Use of Markov Chain Monte Carlo in Bayesian Estimation -- 5.3.4.1 The Algorithm -- 5.3.4.2 The Choice of the Proposal Distribution -- 5.3.4.3 Assessing the Convergence -- 5.3.5 Case Study -- 5.4 Conclusions -- References -- 6 New Trends in Nonparametric Linear System Identification -- 6.1 Introduction -- 6.2 System Identification Problem -- 6.2.1 Continuous-Time Formulation -- 6.2.2 Discrete-Time Formulation -- 6.3 The Classical Approach to System Identification -- 6.3.1 Model Structures Examples -- 6.3.2 Estimation of Model Dimension -- 6.4 Limitations of the Classical Approach to System Identification: Assessment of Cerebral Hemodynamics Using MRI -- 6.5 The Nonparametric Gaussian Regression Approach to System Identification -- 6.5.1 Estimate of the Impulse Response for Known Hyperparameters -- 6.5.2 Hyperparameter Estimation Via Marginal Likelihood Optimization -- 6.5.3 Covariances for System Identification: The Stable Spline Kernels -- 6.6 Assessment of Cerebral Hemodynamics Using the Stable Spline Estimator -- 6.7 Conclusions -- References -- 7 Population Modelling -- 7.1 Introduction -- 7.1.1 Problem Statement -- 7.2 Naïve Data Approaches: Naïve Average and Naïve Pooled Data -- 7.2.1 Naïve Average Data -- 7.2.2 Naïve Pooled Data -- 7.3 Two-Stage Approaches: Standard, Global, and Iterative Two-Stage -- 7.3.1 Standard Two-Stage -- 7.3.2 Global Two-Stage -- 7.3.3 Iterative Two-Stage -- 7.4 Nonlinear Mixed-Effects Modelling -- 7.4.1 Basic Definitions: Fixed Effects, Intersubject Variability, Residual Random Effects, Covariates -- 7.4.2 Formalization: First Stage and Second Stage.
7.4.2.1 First Stage (Observations) -- 7.4.2.2 Second Stage (Population) -- 7.4.3 An Example: A Population Model of C-Peptide Kinetics -- 7.4.3.1 First Stage (Observations) -- 7.4.3.2 Second Stage (Population) -- 7.4.4 Estimation Methods: First Order with Post Hoc, First-Order Conditional Estimation, Laplace, Stochastic Approximation ... -- 7.4.4.1 First Order -- 7.4.4.2 FOCE Approximation -- 7.4.4.3 Laplace Method -- 7.4.4.4 Stochastic Approximation of the Expectation-Maximization Algorithm -- 7.4.5 Bayesian Approach to Nonlinear Mixed-Effects Models -- 7.4.5.1 Stage 1-Model for the Data -- 7.4.5.2 Stage 2-Model for Heterogeneity Between Subjects -- 7.4.5.3 Stage 3-Model for the Priors -- 7.4.6 Evaluation of Modelling Results -- 7.4.6.1 Individual and Population Parameters-Standard Error of the Estimates -- 7.4.6.2 Individual and Population Prediction-Weighted Residuals -- 7.4.6.3 Population Estimates -- 7.4.6.4 Individual Estimates -- 7.4.6.5 Visual Predictive Check -- 7.4.6.6 Shrinkage -- 7.4.7 Model Selection for Nonlinear Mixed-Effects Models -- 7.5 Covariate Models in Nonlinear Mixed-Effects Models -- References -- 8 Systems Biology -- 8.1 Introduction -- 8.2 Modelling the System: ODE Models -- 8.2.1 Model Characterization -- 8.2.1.1 Mass Action Law -- 8.2.1.2 Michaelis-Menten Equation -- 8.2.1.3 Hill Equation -- 8.2.2 Simulation and Parameter Estimation of Oscillating Systems -- 8.2.2.1 Limit Cycle Models -- 8.2.2.2 Optimization Methods -- 8.2.3 Sensitivity Analysis for Oscillating Systems -- 8.2.3.1 Period Sensitivity -- 8.2.3.2 Phase Response Curve -- 8.3 Modelling the Data: Statistical Models -- 8.3.1 Inferential Statistics -- 8.3.2 Differentially Expressed Genes -- 8.3.2.1 Student's t-Test -- 8.3.2.2 LIMMA (Linear Models for Microarray Data) -- 8.3.2.3 Permutation Test -- 8.3.3 Pathway and Gene-Ontology Enrichment.
8.3.3.1 Over-Representation Analysis -- 8.3.3.2 Gene Set Enrichment -- 8.3.4 Pathway Inference -- 8.3.5 Supervised Classification -- 8.3.6 COMBINER (Core Module Biomarker Identification with Network Exploration) -- 8.4 Applications -- 8.4.1 Circadian Rhythms -- 8.4.1.1 Biological Motivation -- 8.4.1.2 Model Design -- 8.4.1.3 Parameter Estimation -- 8.4.1.4 Model Predictions and Validation -- 8.4.2 Posttraumatic Stress Disorder -- 8.4.2.1 Biomarkers for PTSD -- 8.4.2.2 Core Module Blood Biomarker Network -- 8.4.2.3 Core Module Brain Biomarker Network -- 8.5 Conclusions -- Acknowledgments -- References -- 9 Reverse Engineering of High-Throughput Genomic and Genetic Data -- 9.1 Introduction -- 9.2 Reverse Engineering Transcriptional Data -- 9.2.1 Pairwise Methods -- 9.2.2 Model-Based Methods -- 9.2.2.1 Boolean Models -- 9.2.2.2 Models Based on Differential Equations -- 9.2.3 Performance of Reverse Engineering Algorithms -- 9.3 Reverse Engineering Genetic Genomics Data -- 9.4 Conclusion -- References -- 10 Tracer Experiment Design for Metabolic Fluxes Estimation in Steady and Nonsteady State -- 10.1 Introduction -- 10.2 Fundamentals -- 10.3 Accessible Pool and System Fluxes -- 10.4 The Tracer Probe -- 10.5 Estimation of Tracee Fluxes in Steady State -- 10.5.1 Single Injection -- 10.5.2 Constant Infusion -- 10.5.3 Primed Continuous Infusion -- 10.6 Estimation of Nonsteady-State Fluxes -- 10.6.1 Assessment of Ra: The Tracer-to-Tracee Clamp -- 10.6.1.1 No Exogenous Source of Tracee -- 10.6.1.2 Known Exogenous Source of Tracee -- 10.6.1.3 Unknown Exogenous Source of Tracee -- 10.6.2 Assessment of Rd and U -- 10.7 Conclusion -- References -- 11 Stochastic Models of Physiology -- 11.1 Introduction -- 11.2 Randomness and Probability -- 11.3 Probability Distributions and Stochastic Processes -- 11.4 The Law of Large Numbers and Limit Theorems.
11.5 Analysis of Stochastic Associations: Correlation and Regression.
Abstract:
Modelling Methodology for Physiology and Medicine, Second Edition, offers a unique approach and an unprecedented range of coverage of the state-of-the-art, advanced modeling methodology that is widely applicable to physiology and medicine. The second edition, which is completely updated and expanded, opens with a clear and integrated treatment of advanced methodology for developing mathematical models of physiology and medical systems. Readers are then shown how to apply this methodology beneficially to real-world problems in physiology and medicine, such as circulation and respiration. The focus of Modelling Methodology for Physiology and Medicine, Second Edition, is the methodology that underpins good modeling practice. It builds upon the idea of an integrated methodology for the development and testing of mathematical models. It covers many specific areas of methodology in which important advances have taken place over recent years and illustrates the application of good methodological practice in key areas of physiology and medicine. It builds on work that the editors have carried out over the past 30 years, working in cooperation with leading practitioners in the field. Builds upon and enhances the reader's existing knowledge of modeling methodology and practice Editors are internationally renowned leaders in their respective fields Provides an understanding of modeling methodologies that can address real problems in physiology and medicine and achieve results that are beneficial either in advancing research or in providing solutions to clinical problems.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Added Author:
Electronic Access:
Click to View