Cover image for Green Energetic Materials.
Green Energetic Materials.
Title:
Green Energetic Materials.
Author:
Brinck, Tore.
ISBN:
9781118676455
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (304 pages)
Contents:
Green Energetic Materials -- Contents -- List of Contributors -- Preface -- 1. Introduction to Green Energetic Materials -- 1.1 Introduction -- 1.2 Green Chemistry and Energetic Materials -- 1.3 Green Propellants in Civil Space Travel -- 1.3.1 Green Oxidizers to Replace Ammonium Perchlorate -- 1.3.2 Green Liquid Propellants to Replace Hydrazine -- 1.3.3 Electric Propulsion -- 1.4 Conclusions -- References -- 2. Theoretical Design of Green Energetic Materials: Predicting Stability, Detection, Synthesis and Performance -- 2.1 Introduction -- 2.2 Computational Methods -- 2.3 Green Propellant Components -- 2.3.1 Trinitramide -- 2.3.1.1 Synthesis and Detection -- 2.3.1.2 Properties and Performance -- 2.3.2 Energetic Anions Rich in Oxygen and Nitrogen -- 2.3.2.1 Trinitrogen Dioxide Anion -- 2.3.2.2 1-Nitro-2-oxo-3-Amino-Triazene Anion -- 2.3.3 The Pentazolate Anion and its Oxy-Derivatives -- 2.3.3.1 Kinetic Stability -- 2.3.3.2 Spectroscopic Detection -- 2.3.3.3 Synthesis -- 2.3.3.4 Performance -- 2.3.4 Tetrahedral N4 -- 2.3.4.1 Potential Energy Surface -- 2.3.4.2 Spectroscopic Detection -- 2.3.4.3 Synthesis -- 2.3.4.4 Thermodynamic Stability and Performance -- 2.4 Conclusions -- References -- 3. Some Perspectives on Sensitivity to Initiation of Detonation -- 3.1 Energetic Materials and Green Chemistry -- 3.2 Sensitivity: Some Background -- 3.3 Sensitivity Relationships -- 3.4 Sensitivity: Some Relevant Factors -- 3.4.1 Amino Substituents -- 3.4.2 Layered (Graphite-Like) Crystal Lattice -- 3.4.3 Free Space in the Crystal Lattice -- 3.4.4 Weak Trigger Bonds -- 3.4.5 Molecular Electrostatic Potentials -- 3.5 Summary -- Acknowledgments -- References -- 4. Advances Toward the Development of "Green" Pyrotechnics -- 4.1 Introduction -- 4.2 The Foundation of "Green" Pyrotechnics -- 4.3 Development of Perchlorate-Free Pyrotechnics.

4.3.1 Perchlorate-Free Illuminating Pyrotechnics -- 4.3.2 Perchlorate-Free Simulators -- 4.4 Removal of Heavy Metals from Pyrotechnic Formulations -- 4.4.1 Barium-Free Green-Light Emitting Illuminants -- 4.4.2 Barium-Free Incendiary Compositions -- 4.4.3 Lead-Free Pyrotechnic Compositions -- 4.4.4 Chromium-Free Pyrotechnic Compositions -- 4.5 Removal of Chlorinated Organic Compounds from Pyrotechnic Formulations -- 4.5.1 Chlorine-Free Illuminating Compositions -- 4.6 Environmentally Friendly Smoke Compositions -- 4.6.1 Environmentally Friendly Colored Smoke Compositions -- 4.6.2 Environmentally Friendly White Smoke Compositions -- 4.7 Conclusions -- Acknowledgments -- Abbreviations -- References -- 5. Green Primary Explosives -- 5.1 Introduction -- 5.1.1 What is a Primary Explosive? -- 5.1.1.1 Common Initiating Devices: Detonators/Primers/Blasting Caps -- 5.1.2 The Case for Green Primary Explosives -- 5.1.3 Legacy Primary Explosives -- 5.1.3.1 Lead Azide (LA) -- 5.1.3.2 Lead Styphnate (LS) -- 5.2 Green Primary Explosive Candidates -- 5.2.1 Inorganic Compounds -- 5.2.1.1 Silver Azide (SA) -- 5.2.1.2 Other Inorganic Azides -- 5.2.1.3 Nickel Hydrazine Nitrate (NHN) -- 5.2.1.4 Metastable Intermolecular Composites (MICs) -- 5.2.1.5 Red Phosphorous -- 5.2.2 Organic-Based Compounds -- 5.2.2.1 Tetrazoles -- 5.2.2.2 Sodium 5-Nitrotetrazolate (NaNT) -- 5.2.2.3 Copper(II) 5-Nitrotetrazolate Coordination Compounds -- 5.2.2.4 Copper(I) 5-nitrotetrazolate (DBX-1) -- 5.2.2.5 Bis-(5-Nitrotetrazole)Tetraamine Cobalt(III) Perchlorate (BNCP) -- 5.2.2.6 Other Tetrazoles -- 5.2.2.7 2-Diazo-4,6-Dinitrophenol (DDNP) -- 5.2.2.8 Potassium 4,6-Dinitrobenzofuroxan (KDNBF) -- 5.2.2.9 Potassium 4,6-Dinitro-7-Hydroxybenzofuroxan (KDNP) -- 5.2.2.10 Cyanuric Triazide (CTA), aka Triazine Triazide (TTA).

5.2.2.11 Peroxide Explosives: Triacetone Triperoxide (TATP) and Hexamethylenetriperoxide Diamine (HMTD) -- 5.3 Conclusions -- Acknowledgments -- References -- 6. Energetic Tetrazole N-oxides -- 6.1 Introduction -- 6.2 Rationale for the Investigation of Tetrazole N-oxides -- 6.3 Synthetic Strategies for the Formation of Tetrazole N-oxides -- 6.3.1 HOF.CH3CN -- 6.3.2 Oxone® -- 6.3.3 CF3COOH/H2O2 -- 6.3.4 Cyclization of Azido-Oximes -- 6.4 Recent Examples of Energetic Tetrazole N-oxides -- 6.4.1 Tetrazole N-oxides -- 6.4.2 Bis(tetrazole-N-oxides) -- 6.4.3 5,5'-Azoxytetrazolates -- 6.4.4 Bis(tetrazole)dihydrotetrazine and Bis(tetrazole)tetrazine N-oxides -- 6.5 Conclusion -- Acknowledgments -- References -- 7. Green Propellants Based on Dinitramide Salts: Mastering Stability and Chemical Compatibility Issues -- 7.1 The Promises and Problems of Dinitramide Salts -- 7.2 Understanding Dinitramide Decomposition -- 7.2.1 The Dinitramide Anion -- 7.2.2 Dinitraminic Acid -- 7.2.3 Dinitramide Salts -- 7.2.3.1 Potassium Dinitramide (KDN) -- 7.2.3.2 Ammonium Dinitramide (ADN) -- 7.3 Vibrational Sum-Frequency Spectroscopy of ADN and KDN -- 7.4 Anomalous Solid-State Decomposition -- 7.5 Dinitramide Chemistry -- 7.5.1 Compatibility and Reactivity of ADN -- 7.5.2 Dinitramides in Synthesis -- 7.6 Dinitramide Stabilization -- 7.7 Conclusions -- References -- 8. Binder Materials for Green Propellants -- 8.1 Binder Properties -- 8.2 Inert Polymers for Binders -- 8.2.1 Polybutadiene -- 8.2.2 Polyethers -- 8.2.3 Polyesters and Polycarbonates -- 8.3 Energetic Polymers -- 8.3.1 Nitrocellulose -- 8.3.2 Poly(glycidyl azide) -- 8.3.3 Poly(3-nitratomethyl-3-methyloxetane) -- 8.3.4 Poly(glycidyl nitrate) -- 8.3.5 Poly[3,3-bis(azidomethyl)oxetane] -- 8.4 Energetic Plasticisers -- 8.5 Outlook for Design of New Green Binder Systems -- 8.5.1 Architecture of the Binder Polymer.

8.5.2 Chemical Composition and Crosslinking Chemistries -- References -- 9. The Development of Environmentally Sustainable Manufacturing Technologies for Energetic Materials -- 9.1 Introduction -- 9.2 Explosives -- 9.2.1 Sustainable Manufacturing of Explosives -- 9.2.2 Environmentally Friendly Materials for Initiation -- 9.2.3 Synthesis of Explosive Precursors -- 9.2.3.1 The Use of Oxone -- 9.3 Pyrotechnics -- 9.3.1 Commercial Pyrotechnics Manufacturing -- 9.3.2 Military Pyrotechnics -- 9.4 Propellants -- 9.4.1 The "Green Missile" Program -- 9.4.2 Other Rocket Propellant Efforts -- 9.4.3 Gun Propellants -- 9.5 Formulation -- 9.6 Conclusions -- Acknowledgments -- Abbreviations and Acronyms -- References -- 10. Electrochemical Methods for Synthesis of Energetic Materials and Remediation of Waste Water -- 10.1 Introduction -- 10.2 Practical Aspects -- 10.3 Electrosynthesis -- 10.3.1 Electrosynthesis of EM and EM Precursors -- 10.3.2 Electrosynthesis of Useful Reagents -- 10.4 Electrochemical Remediation -- 10.4.1 Direct Electrolysis -- 10.4.1.1 Cathodic Reduction -- 10.4.1.2 Combined Reduction and Oxidation -- 10.4.1.3 Anodic Oxidation -- 10.4.2 Indirect Electrolytic Methods -- 10.4.3 Electrokinetic Remediation of Soils -- 10.4.4 Electrodialysis -- 10.5 Current Developments and Future Directions -- References -- Index.
Abstract:
Since the end of the 20th century it has been increasingly realised that the use, or production, of many energetic materials leads to the release of substances which are harmful to both humans and the environment. To address this, the principles of green chemistry can be applied to the design of new products and their manufacturing processes, to create green energetic materials that are virtually free of environmental hazards and toxicity issues during manufacturing, storage, use and disposal. Active research is underway to develop new ingredients and formulations, green synthetic methods and non-polluting manufacturing processes. Green Energetic Materials provides a detailed account of the most recent research and developments in the field, including green pyrotechnics, explosives and propellants. From theoretical modelling and design of new materials, to the development of sustainable manufacturing processes, this book addresses materials already on the production line, as well as considering future developments in this evolving field. Topics covered include: Theoretical design of green energetic materials Development of green pyrotechnics Green primary and secondary explosives Oxidisers and binder materials for green propellants Environmentally sustainable manufacturing technologies for energetic materials Electrochemical methods for synthesis of energetic materials and waste remediation Green Energetic Materials is a valuable resource for academic, industrial and governmental researchers working on the development of energetic materials, for both military and civilian applications.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: