Cover image for Advanced Hierarchical Nanostructured Materials.
Advanced Hierarchical Nanostructured Materials.
Title:
Advanced Hierarchical Nanostructured Materials.
Author:
Zhang, Qiang.
ISBN:
9783527664979
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (507 pages)
Contents:
Advanced Hierarchical Nanostructured Materials -- Contents -- Preface -- List of Contributors -- Chapter 1 Structural Diversity in Ordered Mesoporous Silica Materials -- 1.1 Introduction -- 1.2 Electron Crystallography and Electron Tomography -- 1.2.1 Electron Crystallography -- 1.2.2 Electron Tomography -- 1.3 Diverse Structures of Ordered Mesoporous Silicas -- 1.3.1 2D Hexagonal Structures with Cylindrical Channels -- 1.3.2 3D Mesoporous Structures with Cage-Type Pores -- 1.3.3 Bi-Continuous Mesoporous Structures -- 1.3.4 Tri-Continuous Mesoporous Structure IBN-9 -- 1.3.5 Low-Symmetry Mesoporous Structures -- 1.3.6 Transition and Intergrowth of Different Mesoporous Structures -- 1.4 Outlook -- References -- Chapter 2 Hierarchically Nanostructured Biological Materials -- 2.1 Introduction -- 2.2 "Bottom-Up" Design Scheme -- 2.3 Organic-Inorganic Interfaces -- 2.4 Engineering Principles in Biological Materials -- 2.4.1 Anisotropy -- 2.4.2 Effects of Scaling -- 2.4.3 Organizing Defects and Damage in Biological Materials -- 2.4.4 Mesocrystalline Schemes in Short- to Long-Range Organization -- 2.4.5 Hierarchical Structuring and Its Properties -- 2.5 Model Hierarchical Biological Systems and Materials -- 2.5.1 Nacre -- 2.5.2 Wood -- 2.5.3 Bone -- 2.5.4 Diatoms -- 2.5.5 Butterfly Wings -- 2.5.6 Glass Sponge -- 2.5.7 Adult Sea Urchin Spine -- 2.5.8 Red Coral -- 2.6 Conclusions and Outlook -- Acknowledgments -- References -- Chapter 3 Use of Magnetic Nanoparticles for the Preparation of Micro- and Nanostructured Materials -- 3.1 Introduction -- 3.2 Preparation of Superparamagnetic Nanocolloids -- 3.2.1 Synthesis of Magnetic Nanocrystals -- 3.2.2 Synthesis of Polymer-Magnetic Nanocomposite Particles and Magnetic Nanoclusters -- 3.2.3 Summary -- 3.3 Magnetic Gels -- 3.3.1 Summary.

3.4 Self-Assembly of Magnetic Nanoparticles, Nanoclusters, and Magnetic-Polymer Nanocomposites -- 3.4.1 Assembly in 1-D Structures -- 3.4.2 Assembly in Higher Dimensional Structures -- 3.4.3 Summary -- 3.5 Magnetic Colloidal Crystals -- 3.5.1 Summary -- 3.6 Concluding Remarks -- Acknowledgment -- References -- Chapter 4 Hollow Metallic Micro/Nanostructures -- 4.1 Introduction -- 4.2 Synthetic Methods for 1-D Hollow Metallic Micro/Nanostructures -- 4.2.1 Template-Directed Approach -- 4.2.1.1 Hard Template Methods -- 4.2.1.2 Sacrificial Templates -- 4.2.1.3 Soft Template Methods -- 4.2.2 Template-Free Methods -- 4.2.3 Electrospinning Technique -- 4.3 Synthetic Methods for 3-D or Nonspherical Hollow Metallic Micro/Nanostructures -- 4.3.1 Hard Template Strategy -- 4.3.2 Sacrificial Template Strategy -- 4.3.3 Soft Template Strategy -- 4.3.4 Template-Free Strategy -- 4.3.4.1 Ostwald Ripening -- 4.3.4.2 Kirkendall Effect -- 4.4 Potential Applications of Hollow Metallic Micro/Nanostructures -- 4.4.1 Lithium-Ion Batteries -- 4.4.2 Magnetic Properties -- 4.4.3 Sensors -- 4.4.4 Catalytic Properties -- 4.5 Conclusions and Outlook -- Acknowledgments -- References -- Chapter 5 Polymer Vesicles -- 5.1 Introduction -- 5.2 Vesicle Formation -- 5.3 Smart Polymer Vesicles -- 5.3.1 pH-Responsive Vesicles -- 5.3.2 Thermoresponsive Vesicles -- 5.3.3 Voltage-Responsive Polymer Vesicles -- 5.3.4 Sugar-Responsive Vesicles -- 5.3.5 Photoresponsive Vesicles -- 5.4 Applications -- 5.5 Summary and Outlook -- Acknowledgments -- References -- Chapter 6 Helical Nanoarchitecture -- 6.1 Introduction -- 6.2 Fabrication of Organic Helical Nanostructures -- 6.2.1 Helical Micelles from Staggered Stacking -- 6.2.2 Helical Micelle-Like Copolymers -- 6.2.3 Helical Organic Nanostructures by Postsynthetic Processes.

6.3 Fabrication of Inorganic Helical Nanostructures -- 6.3.1 Templated Methods -- 6.3.1.1 Organic Templates -- 6.3.1.2 Inorganic Templates -- 6.3.1.3 Backfilling of Inorganic Materials -- 6.3.2 Solution-Based Reactions -- 6.3.2.1 Staggered Stacking -- 6.3.2.2 Space Confinement -- 6.3.3 Catalytic Deposition -- 6.3.3.1 Helical Carbon Nanomaterials from Anisotropic Growth Mechanism -- 6.3.3.2 Helical Oxide Nanostructures from Electrostatic Mechanism -- 6.3.3.3 Helical Crystals from Screw-Dislocation-Driven Growth Mechanism -- 6.3.4 Postsynthetic Methods -- 6.3.4.1 Electron Beam Irradiation -- 6.3.4.2 Glancing Angle Deposition -- 6.3.4.3 Untwisting of Nanowires -- 6.3.4.4 Curving of a Double Layer -- 6.3.4.5 Buckling of Nanowires under Confinement -- 6.3.4.6 Tilting of Nanopillars under Capillary Forces -- 6.4 Properties of Helical Nanostructures -- 6.4.1 Mechanical Properties -- 6.4.2 Electromagnetic Properties -- 6.4.3 Optical Properties -- Summary -- References -- Chapter 7 Hierarchical Layered Double Hydroxide Materials -- 7.1 Introduction -- 7.2 Preparation of Hierarchical LDHs -- 7.2.1 LDH-Based Belt/Rod-Like Structures -- 7.2.1.1 Reverse Microemulsion Synthesis -- 7.2.1.2 Topotactic Intercalation -- 7.2.2 LDH-Based Nano/Microspheres -- 7.2.2.1 Sacrificial Template Method -- 7.2.2.2 Spray-Drying Method -- 7.2.3 LDH-Based Core-Shell Structures -- 7.2.3.1 Layer-By-Layer (LBL) Assembly -- 7.2.3.2 Coprecipitation Method -- 7.2.3.3 In Situ Growth -- 7.2.4 LDHs as Substrate to the Growth of Hierarchical Structures -- 7.2.4.1 Solution-Based Chemical Synthesis -- 7.2.4.2 CVD Deposition -- 7.3 Properties of Hierarchical LDHs -- 7.3.1 Hierarchical LDHs as Absorbents -- 7.3.2 Hierarchical LDHs as Catalysts and Supports.

7.3.3 Hierarchical LDHs as Electrochemical Energy-Storage Materials -- 7.3.3.1 Supercapacitors -- 7.3.3.2 Lithium-Ion Batteries -- 7.3.4 Hierarchical LDHs as Drug-Delivery System -- 7.4 Summary and Outlook -- Acknowledgments -- References -- Chapter 8 Hierarchically Nanostructured Porous Boron Nitride -- 8.1 Introduction -- 8.2 Synthesis of Mesoporous Boron Nitride -- 8.2.1 Exo-Templating Synthesis -- 8.2.2 Endo-Templating Approach -- 8.2.3 Direct Synthesis -- 8.3 Synthesis of Microporous Boron Nitride -- 8.4 Synthesis of Boron Nitride with Hierarchical Porosity -- 8.4.1 Synthesis of Hierarchical Micro- and Meso-porous Boron Nitride -- 8.4.1.1 Non-Template Methods -- 8.4.1.2 Template Methods -- 8.4.2 Synthesis of Hierarchical Macro-, Meso-, and Micro-porous Boron Nitride -- 8.4.2.1 The Structure-Director Route -- 8.4.2.2 Sintering of Powder -- 8.4.2.3 Direct Route -- 8.5 BN Nanosheets (BNNSs) -- 8.6 Conclusion -- References -- Chapter 9 Macroscopic Graphene Structures: Preparation, Properties, and Applications -- 9.1 Introduction -- 9.2 Preparation of Graphene -- 9.3 The Preparation and Properties of Graphene Macroscopic Structures -- 9.3.1 Vacuum Filtering -- 9.3.1.1 Graphene Macroscopic Structures -- 9.3.1.2 Graphene-Based Macroscopic Hybrid Structures -- 9.3.2 Template-Assisted Growth -- 9.3.2.1 Graphene Macroscopic Structures -- 9.3.2.2 Graphene-Based Macroscopic Hybrid Structures -- 9.3.3 Chemical Self-Assembly Method -- 9.3.3.1 Graphene Macroscopic Structures -- 9.3.3.2 Graphene-Based Macroscopic Hybrid Structures -- 9.3.4 Electrophoretic Method -- 9.3.4.1 Graphene Macroscopic Structures -- 9.3.4.2 Graphene-Based Macroscopic Hybrid Structures -- 9.3.5 Layer-by-Layer Method -- 9.3.5.1 Graphene Macroscopic Structures -- 9.3.5.2 Graphene-Based Macroscopic Hybrid Structures -- 9.3.6 Other Methods.

9.3.6.1 Leavening Strategy -- 9.3.6.2 Centrifugal Evaporation -- 9.3.6.3 Mechanical Cavitation-Chemical Oxidation Approach -- 9.3.6.4 Self-Assembly at a Liquid-Air Interface -- 9.4 Applications of Graphene Macroscopic Structures -- 9.4.1 Energy Storage -- 9.4.1.1 Supercapacitors -- 9.4.1.2 Lithium-Ion Battery -- 9.4.1.3 Hydrogen Storage -- 9.4.2 Selective Absorption -- 9.4.3 Photocatalytic Activities -- 9.4.4 Electrochemical Sensing -- 9.4.5 Actuator -- 9.4.6 Bio-Applications -- 9.5 Conclusions and Outlook -- References -- Chapter 10 Hydrothermal Nanocarbons -- 10.1 Introduction -- 10.2 Templating - An Opportunity for Pore Morphology Control -- 10.2.1 Hard Templating in HTC -- 10.2.2 Soft Templating HTC -- 10.2.3 Naturally Inspired Systems: The Use of Natural Templates -- 10.3 Carbon Aerogels -- 10.3.1 Ovalbumin/Glucose-Derived HTC Carbogels -- 10.3.2 Borax-Mediated Formation of HTC Carbogels from Glucose -- 10.3.3 Carbogels from the Hydrothermal Treatment of Sugar and Phenolic Compounds -- 10.3.4 Emulsion-Templated "Carbo-HIPEs" from the Hydrothermal Treatment of Sugar Derivatives and Phenolic Compounds -- 10.4 Hydrothermal Carbon Nanocomposites -- 10.4.1 Coating HTC onto Preformed Nanostructures -- 10.4.2 Post-Synthetic Decoration of HTC with Inorganic Nanostructures -- 10.4.3 One-Step HTC Synthetic Method -- 10.4.4 HTC as Sacrificial Templates for Inorganic Porous Materials -- 10.5 Hydrothermal Carbon Quantum Dots -- 10.6 Summary and Outlook -- References -- Chapter 11 Hierarchical Porous Carbon Nanocomposites for Electrochemical Energy Storage -- 11.1 Introduction -- 11.2 Types of Porous Structures -- 11.2.1 Pore Size -- 11.2.2 Zero-Dimensional Porous Structures -- 11.2.3 One-Dimensional Porous Structures -- 11.2.4 Two-Dimensional Porous Structures -- 11.2.5 Three-Dimensional Porous Structures.

11.3 Synthesis of Porous Structures.
Abstract:
An overview of the recent developments and prospects in this highly topical area, covering the synthesis, characterization, properties and applications of hierarchical nanostructured materials. The book concentrates on those materials relevant for research and development in the fields of energy, biomedicine and environmental protection, with a strong focus on 3D materials based on nanocarbons, mesoporous silicates, hydroxides, core-shell particles and helical nanostructures. Thanks to its clear concept and application-oriented approach, this is an essential reference for experienced researchers and newcomers to the field alike.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: