
Implantable Bioelectronics.
Title:
Implantable Bioelectronics.
Author:
Katz, Evgeny.
ISBN:
9783527673179
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (473 pages)
Contents:
Implantable Bioelectronics -- Contents -- Preface -- List of Contributors -- Chapter 1 Implantable Bioelectronics - Editorial Introduction -- References -- Chapter 2 Magnetically Functionalized Cells: Fabrication, Characterization, and Biomedical Applications -- 2.1 Introduction -- 2.2 Magnetic Microbial Cells -- 2.2.1 Direct Deposition of MNPs onto Microbial Cells -- 2.2.2 Polymer-Mediated Deposition of MNPs onto Microbial Cells -- 2.2.2.1 Layer-by-Layer Magnetic Functionalization of Microbial Cells -- 2.2.2.2 Single-step Polymer-mediated Magnetic Functionalization of Microbial Cells -- 2.2.3 Applications of Magnetically Modified Microbial Cells -- 2.2.3.1 Biosorbents and Biocatalysts -- 2.2.3.2 Whole-Cell Biosensors and Microfluidic Devices -- 2.2.3.3 Remotely Controlled Organisms -- 2.3 Magnetic Labeling of Mammal (Human) Cells -- 2.3.1 Intracellular Labeling of Cells -- 2.3.1.1 Labeling with Anionic Magnetic Nanoparticles -- 2.3.1.2 Labeling with Cationic Magnetic Nanoparticles -- 2.3.2 Extracellular Labeling of Cells -- 2.3.3 Applications of Magnetically Labeled Cells in Biomedicine -- 2.3.3.1 MRI Imaging of MNPs-Labeled Cells -- 2.3.3.2 MNPs-Mediated Cell Delivery and Tissue Engineering -- 2.4 Conclusion -- Acknowledgment -- References -- Chapter 3 Untethered Insect Interfaces -- 3.1 Introduction -- 3.2 Systems for Tetherless Insect Flight Control -- 3.2.1 Various Approaches to Tetherless Flight Control -- 3.2.2 Neurostimulation for Initiation of Wing Oscillations -- 3.2.3 Extracellular Stimulation of the Muscles to Elicit Turns -- 3.3 Implantable Bioelectronics in Insects -- 3.3.1 Example: Insertion of Flexible Substrates into the Developing Eye -- 3.4 Conclusions -- References -- Chapter 4 Miniaturized Biomedical Implantable Devices -- 4.1 Introduction.
4.2 Energy Harvesting as a Pathway to Miniaturization -- 4.3 Implementation of Implantable Devices -- 4.3.1 RF Power Harvesting -- 4.3.1.1 Matching Network -- 4.3.1.2 Rectifier -- 4.3.1.3 Regulator and Bandgap Reference -- 4.3.1.4 Low-Power Controller and Auxiliary Circuits in the Implant Functional Block -- 4.3.2 Wireless Communication Link -- 4.3.2.1 Forward Data Link -- 4.3.2.2 Reverse Data Link -- 4.3.3 Payload and Applications: Locomotive Implant and Implantable Cardiac Probe -- 4.3.3.1 Actuation for Therapeutics: Millimeter-Sized Wirelessly Powered and Remotely Controlled Locomotive Implant -- 4.3.3.2 Low-Power Sensing for Diagnostics: Implantable Intracardiac Probe -- 4.4 Conclusion -- References -- Chapter 5 Cross-Hierarchy Design Exploration for Implantable Electronics -- 5.1 Introduction -- 5.2 System Overview of a Generic Bioelectronic Implant -- 5.3 Circuit Design for Low-Power Signal Processing -- 5.3.1 Design Challenges for Low-Power Bioelectronic Sensor Interface -- 5.3.2 Analog Signal Processing Using Subthreshold Circuits -- 5.3.3 Analog-to-Digital Conversion -- 5.3.4 Low-Power Digital Signal Processing -- 5.3.4.1 VDD Scaling and Parallel Processing -- 5.3.4.2 Dynamic Voltage and Frequency Scaling -- 5.3.4.3 Standby Mode Power Reduction -- 5.3.4.4 Minimum Energy Subthreshold Operation -- 5.3.5 FinFETs for Ultralow Voltage Subthreshold Circuits -- 5.4 Architecture-Level Optimizations for Low-Power Data Processing -- 5.4.1 Optimal Apportioning of Computation Task to Analog and Digital Blocks -- 5.4.2 Approximate Computing for Low Power -- 5.5 Design of Energy-Efficient Memory -- 5.5.1 Design Challenges with Subthreshold SRAM -- 5.5.1.1 On-Current to Off-Current Ratio -- 5.5.1.2 Sizing Constraints -- 5.5.1.3 Variability.
5.5.2 Spin Transfer Torque MRAM (STT-MRAM) for Energy-Efficient Memory Design -- 5.6 Wireless Communication Power Delivery -- 5.6.1 Near-Field Electromagnetic Wireless Communication -- 5.6.2 Far-Field Electromagnetic Wireless Communication -- 5.6.3 Wireless Energy Transfer -- 5.7 Conclusion -- References -- Chapter 6 Neural Interfaces: from Human Nerves to Electronics -- 6.1 Introduction -- 6.2 Fusing Robotics with the Human Body: Interfacing with the Peripheral Nervous System -- 6.2.1 The Anatomy of Peripheral Nerves -- 6.2.1.1 Glial Cells of the Peripheral Nervous System -- 6.2.1.2 Functional Afferent and Efferent Pathways -- 6.2.2 Interfacing with the Periphery for Recording and Stimulation -- 6.2.2.1 Noninvasive Electrodes -- 6.2.2.2 Extraneural Electrodes -- 6.2.2.3 Intrafascicular Electrodes -- 6.2.2.4 Regeneration-Based Electrodes -- 6.2.2.5 Research Designs and Challenges -- 6.3 Listening to the Brain: Interfacing with the Central Nervous System -- 6.3.1 Glial Cells of the Central Nervous System -- 6.3.1.1 Microglia - Sentinels of the Brain -- 6.3.1.2 Astrocytes - Cellular Support for Neurons -- 6.3.2 Interfacing with the Brain for Recordings -- 6.3.2.1 Noninvasive Electrodes -- 6.3.2.2 Extracortical Electrodes -- 6.3.2.3 Invasive Intracortical Electrodes -- 6.3.2.4 Research Designs and Challenges -- 6.4 Electrical Modulation of the Human Nervous System: Stimulation and Clinical Applications -- 6.4.1 Deep Brain Stimulation -- 6.4.1.1 Biological Mechanisms -- 6.4.1.2 Electrode Design and Stimulation -- 6.4.1.3 Research Designs and Challenges -- 6.4.2 Electrical Modulation of Nerve Regeneration -- 6.4.2.1 Biological Mechanisms -- 6.4.2.2 Electrode Stimulation -- 6.4.3 Pain Modulation -- 6.4.3.1 Biological Mechanisms -- 6.4.3.2 Clinical Outcomes -- 6.4.4 Electrical Modulation of Inflammation.
6.4.4.1 The Vagus Nerve and Stimulation -- 6.4.4.2 Cholinergic Anti-Inflammatory Pathway -- 6.5 Future Directions for Neural Interfacing -- References -- Chapter 7 Cyborgs - the Neuro-Tech Version -- 7.1 Introduction -- 7.2 Biological Brains in a Robot Body -- 7.3 Deep Brain Stimulation -- 7.4 General Purpose Brain Implants -- 7.5 Noninvasive Brain-Computer Interfaces -- 7.6 Subdermal Magnetic Implants -- 7.7 RFID Implants -- 7.8 Conclusions -- References -- Chapter 8 Interaction with Implanted Devices through Implanted User Interfaces -- 8.1 Implanted User Interfaces -- 8.1.1 Design Considerations -- 8.1.1.1 Input through Implanted Interfaces -- 8.1.1.2 Output through Implanted Interfaces -- 8.1.1.3 Communication and Synchronization -- 8.1.1.4 Power Supply through Implanted Interfaces -- 8.1.2 Summary -- 8.2 Evaluating Basic Implanted User Interfaces -- 8.2.1 Devices -- 8.2.2 Experimenters -- 8.2.3 Procedure -- 8.2.4 Medical Procedure -- 8.2.5 Study Procedure and Results -- 8.2.5.1 Touch Input Device (Pressure Sensor, Tap Sensor, Button) -- 8.2.5.2 Hover Input Device (Capacitive and Brightness Sensor) -- 8.2.5.3 Output Device (Red LED, Vibration Motor) -- 8.2.5.4 Audio Device (Speaker and Microphone) -- 8.2.5.5 Powering Device (Powermat Wireless Charger) -- 8.2.5.6 Wireless Communication Device (Bluetooth Chip) -- 8.2.6 Discussion -- 8.2.7 Exploring Exposed Components -- 8.3 Qualitative Evaluation -- 8.3.1 Simulating Implants: Artificial Skin -- 8.3.2 Task and Procedure -- 8.3.3 Participants -- 8.3.4 Results -- 8.4 Medical Considerations -- 8.4.1 Location -- 8.4.2 Device Parameters -- 8.4.3 Risks -- 8.4.4 Implications and Future Studies -- 8.5 Discussion and Limitations -- 8.5.1 Study Limitations -- 8.6 Conclusions -- References.
Chapter 9 Ultralow Power and Robust On-Chip Digital Signal Processing for Closed-Loop Neuro-Prosthesis -- 9.1 Introduction -- 9.1.1 Neural Interfaces -- 9.1.2 Closing the Neural Loop: Significance of On-Chip DSP -- 9.2 Algorithm: a Vocabulary-Based Neural Signal -- 9.2.1 Analysis -- 9.2.2 Spike-Level Vocabulary -- 9.2.3 Spike Detection -- 9.2.4 Spike Characterization and Sorting -- 9.2.5 Burst-Level Vocabulary -- 9.2.6 Multichannel Vocabulary for Behavior-Specific Patterns -- 9.2.7 Output Packet Generation -- 9.3 Hardware Implementation -- 9.3.1 Wavelet Module -- 9.3.1.1 Vocabulary Module -- 9.3.2 Area, Power Reduction Methodologies -- 9.3.2.1 Subthreshold versus Super-Threshold Operation -- 9.3.3 Impact of Process Variations on Yield -- 9.3.3.1 Preferential Design -- 9.3.4 Overall Design Flow -- 9.4 Summary -- References -- Chapter 10 Implantable CMOS Imaging Devices -- 10.1 Introduction -- 10.2 Fundamentals of CMOS Imaging Devices -- 10.2.1 Photosensors -- 10.2.2 Active Pixel Sensor -- 10.2.3 Log Sensor -- 10.2.4 Pulse Width Modulation Sensor -- 10.2.5 SPAD Sensor -- 10.3 Artificial Retina -- 10.3.1 Principle of Artificial Retina -- 10.3.2 Artificial Retina Based on CMOS Imaging Device -- 10.4 Brain-Implantable CMOS Imaging Device -- 10.4.1 Measurement Methods for Brain Activities -- 10.4.2 Fiber Endoscope and Head-Mountable Device -- 10.4.3 Brain-Implantable CMOS Imaging Device -- 10.5 Summary and Future Directions -- Acknowledgments -- References -- Chapter 11 Implanted Wireless Biotelemetry -- 11.1 Introduction -- 11.2 Biotelemetry -- 11.2.1 Inductive Link for Forward Data -- 11.2.2 Wireless Power Link -- 11.2.3 Implantable Telemetry Links -- 11.2.3.1 Wideband Telemetry Link -- 11.2.3.2 Multichannel Neural Recording Systems -- 11.2.3.3 Wireless Endoscope.
11.3 Microelectrode Arrays and Interface Electronics.
Abstract:
Here the renowned editor Evgeny Katz has chosen contributions that cover a wide range of examples and issues in implantable bioelectronics, resulting in an excellent overview of the topic. The various implants covered include biosensoric and prosthetic devices, as well as neural and brain implants, while ethical issues, suitable materials, biocompatibility, and energy-harvesting devices are also discussed. A must-have for both newcomers and established researchers in this interdisciplinary field that connects scientists from chemistry, material science, biology, medicine, and electrical engineering.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View