
Design of High Performance Mechatronics - 2nd Revised Edition : High-Tech Functionality by Multidisciplinary System Integration.
Title:
Design of High Performance Mechatronics - 2nd Revised Edition : High-Tech Functionality by Multidisciplinary System Integration.
Author:
Munnig Schmidt, R.
ISBN:
9781614993681
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (928 pages)
Contents:
Title Page -- Contents -- Preface -- Motivation -- Comments to the Second Edition -- Acknowledgements -- Summary -- 1 Mechatronics in the Dutch High-Tech Industry -- 1.1 Introduction -- 1.2 Historical Background -- 1.2.1 Video Long-Play Disk (VLP) -- 1.2.1.1 Signal Encoding and Read-Out Principle -- 1.2.1.2 Compact Disc and Digital Optical Recording -- 1.2.2 Silicon Repeater -- 1.2.2.1 IC Manufacturing Process -- 1.2.2.2 Highly Accurate Waferstage -- 1.2.3 Impact of Mechatronics -- 1.3 Definition and International Positioning -- 1.3.1 Different Views on Mechatronics -- 1.3.1.1 Main Targeted Application -- 1.3.1.2 Focus on Precision-Controlled Motion -- 1.4 Systems Engineering and Design -- 1.4.1 Systems Engineering Methodology -- 1.4.1.1 Definitions and V-Model -- 1.4.1.2 Product Creation Process -- 1.4.1.3 Requirement Budgeting -- 1.4.1.4 Roadmapping -- 1.4.2 Design Methodology -- 1.4.2.1 Concurrent Engineering -- 1.4.2.2 Modular Design and Platforms -- 2 Applied Physics in Mechatronic Systems -- 2.1 Introduction -- 2.2 Mechanics -- 2.2.1 Coordinate Systems -- 2.2.1.1 Cartesian Coordinate System -- 2.2.1.2 Generalised Coordinate System -- 2.2.1.3 Modal coordinate system -- 2.2.2 Force and Motion -- 2.2.2.1 Galilei and Newton's Laws of Motion -- 2.2.2.2 Hooke's Law of Elasticity -- 2.2.2.3 Lagrange Equations of Motion -- 2.3 Electricity and Magnetism -- 2.3.1 Electric Field -- 2.3.1.1 Potential Difference and Capacitance -- 2.3.1.2 Electric Field in an Electric Element -- 2.3.1.3 Electric current -- 2.3.2 Magnetism and the Maxwell Equations -- 2.3.3 Voltage and Power -- 2.3.3.1 Voltage Source -- 2.3.3.2 Electric Power -- 2.3.3.3 Ohm's Law -- 2.3.3.4 Practical Values and Summary -- 2.4 Signal Theory and Wave Propagation -- 2.4.1 The Concept of Frequency -- 2.4.1.1 Random Signals or Noise -- 2.4.1.2 Power of Alternating Signals.
2.4.2 Representation in the Complex Plane -- 2.4.3 Energy Propagation in Waves -- 2.4.3.1 Mechanical Waves -- 2.4.3.2 Wave Equation -- 2.4.3.3 Electromagnetic Waves -- 2.4.3.4 Reflection of Waves -- 2.4.3.5 Standing Waves -- 2.4.4 Fourier Decomposition of Alternating Signals -- 2.4.4.1 Fourier in the Frequency Domain -- 2.4.4.2 Triangle Waveform -- 2.4.4.3 Sawtooth Waveform -- 2.4.4.4 Square Waveform -- 2.4.4.5 Non-Continuous Alternating Signals -- 2.5 Dynamic System analysis -- 2.5.1 Time Domain Related Responses -- 2.5.1.1 Step Response -- 2.5.1.2 Impulse Response -- 2.5.2 Frequency Response -- 2.5.2.1 Laplace and Fourier Transform -- 2.5.2.2 Poles and Zeros -- 2.5.2.3 Frequency Response Function -- 2.5.2.4 Domain Notation of Dynamic Functions -- 2.5.2.5 Bode Plot -- 2.5.2.6 Nyquist Plot -- 2.5.2.7 Limitation to LTI Systems -- 3 Dynamics of Motion Systems -- Introduction -- 3.1 Stiffness -- 3.1.1 Importance of Stiffness for Precision -- 3.1.2 Active Stiffness -- 3.2 Mass-Spring Systems with Damping -- 3.2.1 Dynamic Compliance -- 3.2.1.1 Compliance of a Spring -- 3.2.1.2 Compliance of a Damper -- 3.2.1.3 Compliance of a Body -- 3.2.1.4 Dynamic Stiffness -- 3.2.1.5 Lumping the Dynamic Elements -- 3.2.1.6 Transfer Function of Compliance -- 3.2.2 Effects of Damping -- 3.2.2.1 Damped Resonance and Aperiodic Damping -- 3.2.2.2 Poles and Critical Damping -- 3.2.2.3 Quality-Factor Q and Energy in Resonance -- 3.2.3 Transmissibility -- 3.2.4 Two-Body Mass-Spring System -- 3.2.4.1 Analytical Description -- 3.2.4.2 Multiplicative Expression -- 3.2.4.3 Effect of Different Mass Ratios -- 3.3 Modal Decomposition -- 3.3.1 Eigenmodes of Two-Body Mass-Spring System -- 3.3.2 Adding Damping to Eigenmodes -- 3.3.2.1 High levels of damping -- 3.3.3 Theory of Modal Decomposition -- 3.3.3.1 Multi Degree of Freedom Equation of Motion.
3.3.3.2 Eigenvalues and Eigenvectors -- 3.3.3.3 Modal Coordinates -- 3.3.3.4 Resulting Transfer Function -- 3.3.4 Graphical Representation of Mode Shapes -- 3.3.4.1 Traditional Representation -- 3.3.4.2 Lever Representation -- 3.3.4.3 General System -- 3.3.4.4 User-Defined Physical DOF -- 3.3.5 Physical Meaning of Modal Parameters -- 3.3.5.1 Two-Body Mass-Spring System -- 3.3.5.2 Planar Flexibly Guided System -- 3.3.6 A Pragmatic View on Sensitivity Analysis -- 3.3.6.1 Example of Two Body Mass-Spring System -- 3.3.6.2 Example of Slightly Damped Resonance -- 3.3.7 Suspension and Rigid-Body Modes -- 3.3.7.1 Non-Zero Rigid-Body Eigenfrequency -- 3.4 Mechanical Frequency Response -- 3.4.1 Multiple eigenmodes -- 3.4.2 Characteristic Frequency Responses -- 3.4.2.1 Frequency Response Type I -- 3.4.2.2 Frequency Response Type II -- 3.4.2.3 Frequency Response Type III -- 3.4.2.4 Frequency Response Type IV -- 3.4.3 Example Systems with Type I/II/IV Response -- 3.4.3.1 Planar Moving Body on Compliant Spring -- 3.4.3.2 H-drive Waferstage -- 3.5 Summary on Dynamics -- 4 Motion Control -- Introduction -- 4.1 A Walk around the Control Loop -- 4.1.1 Poles and Zeros -- 4.1.1.1 Controlling Unstable Mechanical Systems -- 4.1.1.2 Creating Instability by Active Control -- 4.1.1.3 The Zeros -- 4.1.2 Properties of Feedforward Control -- 4.1.3 Properties of Feedback Control -- 4.2 Feedforward Control -- 4.2.1 Model Based Open-Loop Control -- 4.2.2 Input Shaping -- 4.2.3 Adaptive Feedforward Control -- 4.3 PID Feedback Control -- 4.3.1 PD-Control of a Compact-Disc Player -- 4.3.1.1 Proportional Feedback -- 4.3.1.2 Proportional-Differential Feedback -- 4.3.1.3 Limiting the Differentiating Action -- 4.3.2 Sensitivity Functions of Feedback Control -- 4.3.2.1 Real Feedback Error Sensitivity -- 4.3.3 Stability and Robustness in Feedback Control.
4.3.4 PID-Control of a Mass-Spring System -- 4.3.4.1 P-Control -- 4.3.4.2 D-Control -- 4.3.4.3 I-Control -- 4.3.4.4 Inclusion of one Resonating Eigenmode -- 4.3.5 General Guidelines for PID-control -- 4.3.6 PID-Control of More Complex Systems -- 4.3.6.1 PID-Control of a Magnetic Bearing -- 4.3.6.2 Including Resonating Eigenmodes -- 4.3.6.3 ``Optimal'' PID-Control -- 4.3.6.4 Open-Loop and Closed-Loop -- 4.4 Digital Control -- 4.4.1 Continuous Time versus Discrete Time -- 4.4.2 Sampling of Continuous Signals -- 4.4.3 Digital number representation -- 4.4.4 Digital Filter Theory -- 4.4.4.1 Z-Transform and Difference Equations -- 4.4.4.2 Finite Impulse Response (FIR) Filter -- 4.4.4.3 Infinite Impulse Response (IIR) Filter -- 4.4.4.4 From Continuous to Discrete-Time Filters -- 4.5 State-Space Control Representation -- 4.5.1 State-Space in Relation to Motion Control -- 4.5.1.1 Mechanical Dynamic System in State-Space -- 4.5.1.2 PID-Control Feedback in State-Space -- 4.5.2 State Feedback -- 4.5.2.1 System Identification -- 4.5.2.2 State Estimation -- 4.5.2.3 Additional Remarks on State-Space Control -- 4.6 Limitations of Linear Feedback Control -- 4.7 Conclusions on Motion Control -- 5 Electromechanic actuators -- 5.1 Introduction -- 5.2 Electromagnetics -- 5.2.1 History on Magnetism -- 5.2.2 Magnetism from Electric Current -- 5.2.3 Hopkinson's Law -- 5.2.3.1 Practical Aspects of Hopkinson's Law -- 5.2.3.2 Magnetic Energy -- 5.2.4 Ferromagnetic Materials -- 5.2.4.1 Coil with Ferromagnetic Yoke -- 5.2.4.2 Magnetisation Curve -- 5.2.4.3 Permanent Magnets -- 5.2.5 Creating a Magnetic Field in an Air-Gap -- 5.2.5.1 Optimal Use of Permanent Magnet Material -- 5.2.5.2 Flat Magnets Reduce Fringing Flux -- 5.2.5.3 Low Cost Loudspeaker Magnet -- 5.3 Lorentz Actuator -- 5.3.1 Lorentz Force -- 5.3.2 Improving the Force of a Lorentz Actuator.
5.3.3 The Moving-Coil Loudspeaker Actuator -- 5.3.4 Position Dependency of the Lorentz Force -- 5.3.4.1 Over-Hung and Under-Hung Coil -- 5.3.5 Electronic Commutation -- 5.3.5.1 Three-Phase Electronic Control -- 5.3.6 Figure of Merit of a Lorentz Actuator -- 5.4 Variable Reluctance Actuation -- 5.4.1 Reluctance Force in Lorentz Actuator -- 5.4.1.1 Eddy-Current Ring -- 5.4.1.2 Ironless Stator -- 5.4.2 Analytical Derivation of Reluctance Force -- 5.4.3 Variable Reluctance Actuator. -- 5.4.3.1 Electromagnetic Relay -- 5.4.3.2 Magnetic Attraction Force -- 5.4.4 Permanent Magnet Biased Reluctance Actuator -- 5.4.4.1 Double Variable Reluctance Actuator -- 5.4.4.2 Constant Common Flux -- 5.4.4.3 Combining two Sources of Magnetic Flux -- 5.4.4.4 Hybrid Force Calculation -- 5.4.4.5 Magnetic Bearings -- 5.4.5 Active Linearisation of the Reluctance Force -- 5.5 Application of Electromagnetic Actuators -- 5.5.1 Electrical Interface Properties -- 5.5.1.1 Dynamic Effects of Self-Inductance -- 5.5.1.2 Limitation of the ``Jerk'' -- 5.5.1.3 Damping Caused by Source Impedance -- 5.5.2 Comparison of the Actuation Principles -- 5.5.2.1 Standard Coil Dimension for Comparison -- 5.5.2.2 Force of the Lorentz Actuator -- 5.5.2.3 Force of the Reluctance Actuator -- 5.5.2.4 Force of the Hybrid Actuator -- 5.5.2.5 Dynamic Differences -- 5.5.2.6 Moving Mass -- 5.6 Intermezzo: Electric Transformers -- 5.6.1 Ideal Transformer -- 5.6.2 Real Transformer -- 5.7 Piezoelectric Actuators -- 5.7.1 Piezoelectricity -- 5.7.1.1 Poling -- 5.7.1.2 Tapping the Bound Charge by Electrodes -- 5.7.2 Transducer Models -- 5.7.3 Nonlinearity of Piezoelectric Actuators -- 5.7.3.1 Creep -- 5.7.3.2 Hysteresis -- 5.7.3.3 Aging -- 5.7.4 Mechanical Considerations -- 5.7.4.1 piezoelectric Stiffness -- 5.7.4.2 Actuator Types -- 5.7.4.3 Actuator Integration -- 5.7.4.4 Mechanical Amplification.
5.7.4.5 Multiple Motion Directions by Stacking.
Abstract:
Since they entered our world around the middle of the 20th century, the application of mechatronics has enhanced our lives with functionality based on the integration of electronics, control systems and electric drives.This book deals with the special class of mechatronics that has enabled the exceptional levels of accuracy and speed of high-tech equipment applied in the semiconductor industry, realising the continuous shrink in detailing of micro-electronics and MEMS.As well as the more frequently presented standard subjects of dynamics, motion control, electronics and electromechanics, this book includes an overview of systems engineering, optics and precision measurement systems, in an attempt to establish a connection between these fields under one umbrella.Robert Munnig Schmidt is professor in Mechatronic System Design at Delft University of Technology with industrial experience at Philips and ASML in research and development of consumer and high-tech systems. He is also director of RMS Acoustics & Mechatronics, doing research and development on active controlled low frequency sound systems.Georg Schitter is professor at the Automation and Control Institute (ACIN) at Vienna University of Technology with a standing track record in research on the control and mechatronic design of extremely fast precision motion systems such as video rate AFM systems.Adrian Rankers is managing partner of Mechatronics Academy, developing and delivering high level courses to the industrial community, based on industrial experience at Philips in the research and development of consumer and high-tech systems.Jan van Eijk is emeritus professor in Advanced Mechatronics at Delft University of Technology. He is also director of MICE BV and partner at Mechatronics Academy, acting as industrial R&D advisor and teacher with experience at Philips in the research and
development of consumer and high-tech systems.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Genre:
Electronic Access:
Click to View