
Organic Photovoltaics : Materials, Device Physics, and Manufacturing Technologies.
Title:
Organic Photovoltaics : Materials, Device Physics, and Manufacturing Technologies.
Author:
Brabec, Christoph.
ISBN:
9783527656943
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (638 pages)
Contents:
Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies -- Contents -- List of Contributors -- Part One: Materials for Thin Film Organic Photovoltaics -- 1 Overview of Polymer and Copolymer Materials for Organic Photovoltaics -- 1.1 Introduction -- 1.2 Early Efforts -- 1.3 Toward Devices with 5% Efficiencies -- 1.4 Novel Thiophene-Containing Polymers -- 1.5 Fluorene-Containing Molecules -- 1.6 Carbazole-Based Copolymers -- 1.7 New Heterocyclic Polymers -- 1.8 Polymers Based on Other Types of Building Blocks -- 1.9 Conclusions -- References -- 2 Thiophene-Based High-Performance Donor Polymers for Organic Solar Cells -- 2.1 Introduction -- 2.2 Bandgap Engineering -- 2.3 Charge Generation in Bulk Heterojunction Organic Solar Cells -- 2.4 Polyalkylthiophenes -- 2.4.1 Synthesis -- 2.4.2 Optical and Solid-State Properties -- 2.5 Polyalkylthiophene/PCBM Blends -- 2.6 Polythiophene Copolymers -- 2.7 Side Chain Functionalized P3AT Derivatives -- 2.8 Third-Generation Polythiophenes -- 2.9 Thiophene-Based Push-Pull Copolymers -- 2.10 Benzo[1,2-b:4,5-b0]dithiophene-Based Polymers -- 2.11 Cyclopenta[2,1-b:3,4-b0]dithiophene-Based Polymers -- 2.12 Indacenodithiophene-Based Polymers -- 2.13 Conclusion and Outlook -- References -- 3 Molecular Design of Conjugated Polymers for High-Efficiency Solar Cells -- 3.1 Introduction -- 3.2 Structural Features of Conjugated Polymers -- 3.3 "D-A" Approach -- 3.3.1 Rational Design of Conjugated Backbones: "Weak Donor-Strong Acceptor" Copolymer -- 3.3.1.1 "Weak Donor" Moieties to Improve VOC -- 3.3.1.2 Balancing VOC and JSC: Interplay of Bandgap and Energy Levels -- 3.3.1.3 From BT to 4DTBT: Why is a "Soluble Acceptor" Better? -- 3.3.1.4 "Strong Acceptor" Moieties to Increase JSC -- 3.3.2 Side Chains Are NOT Trivial -- 3.3.2.1 Chain Positions -- 3.3.2.2 Shape and Size.
3.3.3 Substituents Do Matter: The Curious Case of Fluorine -- 3.4 Quinoid Approach -- 3.5 Summary and Outlook -- References -- 4 Solution-Processed Molecular Bulk Heterojunction Solar Cells -- 4.1 Introduction -- 4.2 Monochromophoric Molecules -- 4.2.1 Conjugated Macrocycles and Polycycles -- 4.2.2 Acenes and Heteroacenes -- 4.2.3 Oligothiophenes -- 4.3 Multichromophoric Molecules -- 4.3.1 Colorant Chromophore-Containing Derivatives -- 4.3.1.1 Diketopyrrolopyrrole and Isoindigo Derivatives -- 4.3.1.2 Squaraine Derivatives -- 4.3.1.3 Merocyanine and Borondipyrromethene Derivatives -- 4.3.2 Oligothiophene Derivatives -- 4.3.3 Benzothiadiazole Analogue Derivatives -- 4.3.4 Triphenylamine Derivatives -- 4.4 Summary and Future Directions -- References -- 5 Vacuum-Processed Donor Materials for Organic Photovoltaics -- 5.1 Introduction -- 5.1.1 Basic Characterization of Organic Solar Cells -- 5.2 Planar and Bulk Heterojunction Solar Cells -- 5.3 Summary and Future Prospects -- Acknowledgments -- References -- 6 Polymer-Nanocrystal Hybrid Solar Cells -- 6.1 Introduction -- 6.2 Semiconductor Nanocrystals -- 6.3 Working Principles and Device Structure -- 6.3.1 Donor and Acceptor Materials -- 6.4 Evolution of Polymer-NC Hybrid Solar Cells -- 6.5 Recent Approaches for Overcoming Current Limitations -- 6.5.1 In Situ Synthesis of NCs in the Polymer Film -- 6.5.2 Nanostructured Polymer-Based Assemblies in Solution -- 6.5.3 Lower Bandgap NC Acceptors -- 6.6 Novel Concepts and Perspectives -- 6.6.1 Ternary NC Systems: Energy Level and Bandgap Tuning -- 6.6.2 NC Ligand Design -- 6.6.3 Functionalized Polymers -- 6.6.4 Inorganic Framework for Interdigitated D-A Layers -- 6.6.4.1 Porous Alumina Template-Assisted Approach -- 6.6.4.2 Nanostructured Inorganic Semiconductors as Acceptor Material -- 6.6.5 Nanostructured Polymer.
6.6.6 Carbon-Based Acceptors and Nanocomposites -- 6.6.7 Less Toxic NC Acceptor Materials -- 6.7 Summary and Outlook -- Acknowledgments -- References -- 7 Fullerene-Based Acceptor Materials -- 7.1 Introduction and Overview -- 7.2 Fullerenes as n-Type Semiconductors -- 7.2.1 Electron-Accepting and Transporting Properties -- 7.2.2 Other Electronic Properties -- 7.3 Fullerene Derivatives -- 7.3.1 [60]PCBM -- 7.3.2 [60]PCBM Analogues -- 7.3.3 Substituents on the Phenyl Moiety of PCBM -- 7.3.3.1 Alkoxy Groups -- 7.3.3.2 Fluorination -- 7.3.3.3 Deuterium Labeling -- 7.3.4 Other C60 Derivatives in OPVs -- 7.4 Derivatives of C70 and C84 -- 7.4.1 Derivatives of C70 -- 7.4.2 Derivatives of C84 -- 7.5 Fullerene Bisadducts -- 7.6 Endohedral Compounds -- 7.7 Commercialization of Fullerene Derivatives -- References -- 8 Polymeric Acceptor Semiconductors for Organic Solar Cells -- 8.1 Introduction -- 8.2 Basics Principles and Operation for Organic Solar Cells -- 8.3 Polymeric Acceptor Semiconductors -- 8.3.1 Cyanated Polyphenylenevinylenes -- 8.3.2 Perylene- and Naphthalenediimide-Based Polymers -- 8.3.3 Benzothiadiazole-Based and Other Electron-Poor Polymers -- 8.4 Conclusions and Perspective -- References -- 9 Water/Alcohol-Soluble Conjugated Polymer-Based Interlayers for Polymer Solar Cells -- 9.1 Introduction -- 9.2 The Development of Water/Alcohol-Soluble Conjugated Polymers as Interlayer Materials -- 9.3 Interface Engineering for Polymer Solar Cells -- 9.3.1 Interface Modification for Metal Electrodes -- 9.3.2 Interface Modification for Metal Oxide Electrodes -- 9.3.3 Interface Modification for Graphene and Carbon Nanotube Electrodes -- 9.4 Discussion of the Working Mechanism -- 9.5 Summary -- References -- 10 Metal Oxide Interlayers for Polymer Solar Cells -- 10.1 Introduction -- 10.2 Conventional Structure -- 10.2.1 Hole-Selective Layer: Replacing PEDOT:PSS.
10.2.1.1 Nickel Oxide -- 10.2.1.2 Vanadium, Molybdenum, and Tungsten Oxides -- 10.2.2 Electron-Selective Layer -- 10.2.2.1 Titanium and Zinc Oxides -- 10.3 Inverted Structure -- 10.3.1 Electron-Selective Layer: Reducing the Effects of Cathode Oxidation -- 10.3.1.1 Titanium, Zinc, and Cesium Oxides -- 10.3.1.2 Modification via Molecular Self-Assembly -- 10.4 Tandem Structure -- 10.5 Additional Oxides (Cr2O3, CuOx, PbO) -- 10.6 Conclusions -- References -- Part Two: Device Physics of Thin Film Organic Photovoltaics -- 11 Bimolecular and Trap-Assisted Recombination in Organic Bulk Heterojunction Solar Cells -- 11.1 Introduction -- 11.2 Recombination at Open Circuit -- 11.3 Trap-Assisted Recombination at Open Circuit -- 11.4 Investigation of the Nature Recombination by Electroluminescence Measurements -- 11.5 Bimolecular Recombination Strength in Organic BHJ Solar Cells -- 11.6 Bimolecular Recombination Losses Under Short-Circuit Conditions -- 11.7 Effect of Bimolecular Recombination on Fill Factor and Efficiency -- 11.8 Conclusions -- References -- 12 Organic Photovoltaic Morphology -- 12.1 Introduction -- 12.2 Order in Bulk Heterojunctions -- 12.2.1 Optical Measurements of Order -- 12.2.2 X-Ray Measurement of Crystallinity -- 12.3 Nanoscale Morphology in Bulk Heterojunctions -- 12.3.1 Electron Microscopy -- 12.3.2 Small-Angle Scattering Measurements -- 12.4 Phases in a Bulk Heterojunction -- 12.5 Structure of the Interface between Phases -- 12.5.1 Inferences from Bulk Measurements -- 12.5.2 Surface-Sensitive Measurements -- 12.5.3 Measuring Buried Bilayer Interfaces -- 12.5.4 Measuring Buried Bulk Interfaces -- 12.6 In Situ Measurements of Morphology Development -- 12.6.1 In Situ X-Ray Measurements -- 12.6.2 In Situ Microscopy -- 12.6.3 In Situ Optical and Vibrational Spectroscopies -- 12.6.4 In Operando Measurements.
12.6.5 The Future of In Situ Measurement -- References -- 13 Intercalation in Polymer:Fullerene Blends -- 13.1 Introduction -- 13.2 Methods for Detecting Molecular Mixing -- 13.2.1 X-Ray Diffraction -- 13.2.2 Photoluminescence Measurements -- 13.2.3 Diffusion Measurements -- 13.2.4 Transmission Electron Microscopy Techniques -- 13.2.5 Small-Angle Scattering Techniques -- 13.3 Factors Affecting Molecular Mixing -- 13.3.1 Fullerene Size -- 13.3.2 Side-Chain Attachment Distance -- 13.3.3 Side-Chain Linearity -- 13.3.4 Thermal Treatments -- 13.4 The Effect of Molecular Mixing on Electronic Properties and Solar Cells -- 13.4.1 Exciton Harvesting -- 13.4.2 Geminate Pair Separation, Charge Extraction, and Optimal Blend Ratio -- 13.4.3 Additional Device Implications -- 13.5 Conclusions -- References -- 14 Organic Tandem Solar Cells -- 14.1 Introduction and Working Principle -- 14.2 Measurement Techniques -- 14.3 Efficient Intermediate Charge Carrier Recombination -- 14.4 Light Management -- 14.5 Choice of Materials -- 14.6 Parallel Tandem Architectures -- 14.7 New Tandem Solar Cell Concepts -- 14.8 Conclusions -- Acknowledgments -- References -- 15 Solid-State Dye-Sensitized Solar Cells -- 15.1 Introduction -- 15.2 Working Principles of Solid-State Dye-Sensitized Solar Cells -- 15.2.1 Solar Cell Geometries -- 15.2.2 Light Absorption and Charge Separation -- 15.2.3 Charge Transport -- 15.3 Loss Mechanisms in Solid-State Dye-Sensitized Solar Cells -- 15.4 Solid-State Dye-Sensitized Solar Cells with Spiro-OMeTAD as Hole Conductor -- 15.5 Hybrid Solar Cells with Absorbing Hole Conductors -- 15.6 Ordered Nanostructures for Solid-State Dye-Sensitized Solar Cells -- 15.6.1 TiO2 Nanowires -- 15.6.2 TiO2 Nanotubes -- 15.7 Summary and Outlook -- References -- Part Three: Technology for Thin Film Organic PV.
16 Reel-to-Reel Processing of Highly Conductive Metal Oxides.
Abstract:
The versatility of organic photovoltaics is already well known and this completely revised, updated, and enlarged edition of a classic provides an up-to-date overview of this hot topic. The proven structure of the successful first edition, divided into the three key aspects of successful device design: materials, device physics, and manufacturing technologies, has been retained. Important aspects such as printing technologies, substrates, and electrode systems are covered. The result is a balanced, comprehensive text on the fundamentals as well as the latest results in the area that will set R&D trends for years to come. With its combination of both academic and commercial technological views, this is an optimal source of information for scientists, engineers, and graduate students already actively working in this field, and looking for comprehensive summaries on specific topics.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View