
Physics with Trapped Charged Particles : Lectures from the Les Houches Winter School.
Title:
Physics with Trapped Charged Particles : Lectures from the Les Houches Winter School.
Author:
Thompson, Richard C.
ISBN:
9781783264063
Personal Author:
Physical Description:
1 online resource (377 pages)
Contents:
Contents -- Preface -- 1. Physics with Trapped Charged Particles -- 1.1 Introduction -- 1.2 History of Ion Traps -- 1.3 Principles of Ion Traps -- 1.3.1. The Penning trap -- 1.3.2. The radiofrequency (RF) Paul trap -- 1.3.3. The linear RF trap -- 1.3.4. Low-energy storage rings -- 1.4 Creation, Cooling and Detection of Ions -- 1.4.1. Creation of ions -- 1.4.2. Cooling of ions -- 1.4.2.1. Buffer-gas cooling -- 1.4.2.2. Resistive cooling -- 1.4.2.3. Laser cooling -- 1.4.2.4. Sympathetic cooling -- 1.4.3. Detection of ions -- 1.5 Applications of Ion Traps -- 1.6 Conclusions and Outlook -- Acknowledgments -- References -- 2. Detection Techniques for Trapped Ions -- 2.1 Electronic Techniques -- 2.1.1. Instruments -- 2.1.1.1. Faraday Cup -- 2.1.1.2. Electron multiplier -- 2.1.1.3. Microchannel plate -- 2.1.2. Techniques -- 2.1.2.1. Ion loss -- 2.1.2.2. Depletion techniques -- 2.1.2.3. Ejection with or without additional perturbation -- 2.1.2.4. Time-of-flight profiles -- 2.1.2.5. Image currents -- 2.2 Fluorescence Techniques -- 2.2.1. Lineshape -- 2.2.2. Single-ion detection -- 2.2.3. Motional frequencies -- 2.2.4. Ions as a spatial probe -- 2.2.5. Temporal Ramsey -- 2.2.6. Quantum logic spectroscopy -- 2.2.7. Imaging techniques -- 2.2.8. Optical setup and instrumentation -- References -- 3. Cooling Techniques for Trapped Ions -- 3.1 Introduction -- 3.2 Non-laser Cooling Techniques -- 3.2.1. Electron cooling -- 3.2.2. Resistive cooling -- 3.2.3. Buffer-gas cooling -- 3.3 Laser Cooling -- 3.3.1. Ion-laser interaction Hamiltonian -- 3.3.2. Lamb-Dicke regime -- 3.3.3. Coupling strength -- 3.3.4. Sideband cooling -- 3.3.4.1. Raman sideband excitation -- 3.3.5. Sideband cooling using RF radiation -- 3.3.5.1. Simultaneous cooling of many vibrational modes -- 3.4 Laser Cooling Using Electromagnetically Induced Transparency -- 3.5 Cavity Cooling.
3.6 Cooling Scheme Combining Laser Light and RF -- References -- 4. Accumulation, Storage and Manipulation of Large Numbers of Positrons in Traps I - The Basics -- 4.1 Overview -- 4.2 Positron Trapping -- 4.3 Positron Cooling -- 4.4 Confinement and Characterization of Positron Plasmas in Penning-Malmberg Traps -- 4.5 Radial Compression Using Rotating Electric Fields - the "Rotating-wall" (RW) Technique -- 4.6 Concluding Remarks -- Acknowledgments -- References -- 5. Accumulation, Storage and Manipulation of Large Numbers of Positrons in Traps II - Selected Topics -- 5.1 Overview -- 5.2 Extraction of Beams with Small Transverse Spatial Extent -- 5.3 Multicell Trap for Storage of Large Numbers of Positrons -- 5.4 Electron-Positron Plasmas -- 5.5 Concluding Remarks -- Acknowledgments -- References -- 6. Waves in Non-neutral Plasma -- 6.1 Diocotron Waves -- 6.1.1. Infinite length description -- 6.1.2. A negative energy mode -- 6.1.3. Finite amplitude shift of diocotron mode -- 6.1.4. Finite length diocotron -- 6.1.5. Magnetron regime -- 6.1.6. Higher-order diocotron modes -- 6.2 Plasma Waves -- 6.2.1. Finite length Trivelpiece-Gould modes -- 6.2.2. Thermally excited TG modes -- 6.2.3. Higher-order Trivelpiece-Gould modes -- 6.2.4. Electron acoustic waves -- 6.3 Cyclotron Waves -- Acknowledgments -- References -- 7. Internal Transport in Non-neutral Plasma -- 7.1 Types of Collisions -- 7.1.2. Long-range E x B drift collisions -- 7.2 Test Particle Transport -- 7.2.1. Classical diffusion -- 7.2.2. Long-range E x B drift diffusion -- 7.2.3. Experimental measurements of test particle transport -- 7.2.4. Test particle transport in 2D systems -- 7.2.4.1. Shear-free case -- 7.2.4.2. Effect of shear on 2D test particle transport -- 7.3 Heat Transport -- 7.3.1. Classical heat transport -- 7.3.2. Long-range E x B drift heat transport.
7.3.3. Experimental measurements of cross-magnetic field heat transport -- 7.4 Transport of Angular Momentum -- 7.4.1. Classical viscosity -- 7.4.2. Long-range viscosity -- 7.4.3. Viscosity in 2D system -- 7.5 Table of Transport Coefficients -- Acknowledgments -- References -- 8. Antihydrogen Formation and Trapping -- 8.1 Introduction -- 8.2 Introduction to Antihydrogen Formation and Trapping -- 8.3 Antiproton Catching and Pre-cooling -- 8.4 Trapped Particles and Magnetic Multipoles -- 8.5 The Rotating-wall Technique -- 8.6 Antiproton Preparation -- 8.7 Positron Preparation -- 8.8 Evaporative Cooling of Charged Particles -- 8.9 Merging Antiprotons and Positrons -- 8.10 Trapped Antihydrogen and its Detection -- 8.11 Conclusions and Outlook -- References -- 9. Quantum Information Processing with Trapped Ions -- 9.1 Introduction -- 9.2 Storing Quantum Information in Trapped Ions -- 9.3 Preparation, Manipulation and Detection of an Optical Qubit -- 9.4 Entangling Quantum Gates -- 9.4.1. Cirac-Zoller-type gate interactions -- 9.4.2. Quantum gates based on bichromatic light fields -- 9.4.3. Conditional phase gates -- 9.4.4. Molmer-Sorensen gates -- 9.5 Quantum State Tomography -- 9.6 Elementary Quantum Protocols and Quantum Simulation -- References -- 10. Optical Atomic Clocks in Ion Traps -- 10.1 Introduction -- 10.2 Principles of Operation -- 10.2.1. Trapping, cooling and probing a single ion -- 10.2.2. Clock laser stabilization -- 10.2.3. Femtosecond optical frequency combs -- 10.3 Systems Studied and State-of-the-art Performance -- 10.4 Systematic Frequency Shifts -- 10.5 Conclusions and Perspectives -- Acknowledgments -- References -- 11. Novel Penning Traps -- 11.1 Introduction -- 11.2 Penning Traps -- 11.2.1. The cylindrical trap -- 11.3 The CPW Penning Trap -- 11.3.1. The ideal CPW-trap -- 11.3.1.1. Expressions of the frequencies.
11.3.1.2. The invariance theorem -- 11.4 The Real CPW Penning Trap -- 11.5 Compensation of Electric Anharmonicities -- 11.5.1. The useful trapping interval -- 11.6 Conclusions -- Acknowledgments -- References -- 12. Trapped Electrons as Electrical (Quantum) Circuits -- 12.1 Introduction -- 12.2 The Induced Charge Density -- 12.3 Detection of the Electron's Motion -- 12.4 Equivalent Electrical Circuit of the Trapped Particle -- 12.4.1. Resistive cooling time constant -- 12.5 Coupling the Cyclotron Motion to a Superconducting Cavity -- 12.6 Conclusions -- Acknowledgments -- References -- 13. Basics of Charged Particle Beam Dynamics and Application to Electrostatic Storage Rings -- 13.1 Introduction -- 13.2 Relativistic Energy and Momentum -- 13.3 Basic Features of Magnetic and Electrostatic Bends -- 13.3.1. Magnetic rigidity -- 13.3.2. Electric rigidity -- 13.4 Betatron Oscillations -- 13.4.1. Radial motion -- 13.4.2. Vertical motion -- 13.4.3. Solution of the equation of motion -- 13.5 Quadrupole Magnets -- 13.6 Strong Focusing -- 13.7 Summary -- Acknowledgments -- References -- 14. Electrostatic Storage Rings - An Ideal Tool for Experiments at Ultralow Energies -- 14.1 Introduction -- 14.2 Common Features of Electrostatic Storage Rings -- 14.3 Electrostatic Deflectors of Different Shapes -- 14.4 Electric Field Distribution in Electrostatic Deflectors -- 14.4.1. Electric field in the vicinity of the equilibrium orbit -- 14.5 Equations of Motion in an Electrostatic Deflector -- 14.6 Nonlinear Effects in ESRs -- 14.7 Ion Kinetics and Long-term Beam Dynamics in Electrostatic Storage Rings -- 14.7.1. Kinetic equations -- 14.7.2. Multiple scattering of ions -- 14.7.2.1. Rate of RMS emittance growth -- 14.7.2.2. Mean square scattering angle -- 14.7.2.3. Ionization energy losses -- 14.7.2.4. Multiple scattering on residual gas.
14.7.3. Particle loss probability -- 14.7.4. Intra-beam scattering -- 14.8 Benchmarking of Experiments -- 14.9 Conclusions and Outlook -- Acknowledgments -- References -- Index.
Abstract:
This book is a collection of articles on Physics with Trapped Charged Particles by speakers at the Les Houches Winter School. The articles cover all types of physics with charged particles, and are aimed at introducing the basic issues at hand, as well as the latest developments in the field. It is appropriate for PhD students and early career researchers, or interested parties new to the area.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Genre:
Electronic Access:
Click to View