
Frontiers in Electronics : Advanced Modeling of Nanoscale Electron Devices.
Title:
Frontiers in Electronics : Advanced Modeling of Nanoscale Electron Devices.
Author:
Iniguez, Benjamin.
ISBN:
9789814583190
Personal Author:
Physical Description:
1 online resource (204 pages)
Series:
Selected Topics in Electronics and Systems ; v.54
Selected Topics in Electronics and Systems
Contents:
CONTENTS -- PREFACE -- Monte-Carlo Simulation of Ultra-Thin Film Silicon-on-Insulator MOSFETs -- 1. Introduction -- 2. Ensemble Monte Carlo simulators -- 2.1. Quantum correction methods -- 2.1.1. The effective potential method -- 2.1.2. The density gradient method -- 2.1.3. The effective conduction band edge (ECBE) method -- 2.1.4. The multivalley effective conduction band edge approach (MV-ECBE) -- 2.2. Multisubband-Ensemble Monte Carlo method -- 2.3. Multisubband-Ensemble Monte Carlo validation -- 3. Optimization of ultrathin fully-depleted SOI transistors with ultrathin buried oxide (BOX) -- 4. Orientation effects in ultra-short channel DGSOI devices -- 4.1. DGSOI drain current dependence on crystallographic orientation -- Acknowledgments -- References -- Analytical Models and Electrical Characterisation of Advanced MOSFETs in the Quasi Ballistic Regime -- 1. Introduction -- 2. The Natori - Lundstrom models of Quasi Ballistic Transport -- 2.1. The Natori model of ballistic transport -- 2.2. Injection velocity and subband engineering -- 2.3. Lundstrom models of backscattering -- 3. Beyond the Natori-Lundstrom model -- 3.1. Theoretical foundations of the Natori Lundstrom model: the quasi ballistic drift-diffusion theory -- 3.2. Comparison with Monte Carlo simulations: results and discussion -- 4. Electrical Characterization of MOSFETs in the Quasi Ballistic Regime -- 4.1. Introduction & State of the art -- 4.2. Principle of backscattering coefficient extraction in the linear regime -- 4.3. Results and discussion -- 5. Conclusions -- Acknowledgments -- References -- Physics Based Analytical Modeling of Nanoscale Multigate MOSFETs -- 1. Introduction -- 2. Modeling of DG MOSFETs Based on Conformal Mapping Techniques -- 2.1. Conformal Mapping -- 2.2. Inter-Electrode and Subthreshold Electrostatics in DG MOSFETs -- 2.2.1. Corner correction.
2.2.2. Effect of subthreshold minority carriers near source and drain -- 2.2.3. Verification of subthreshold electrostatics -- 2.2.4. Subthreshold drain current -- 2.2.5. Subthreshold capacitances -- 2.3. Self-Consistent Electrostatics at and above Transition in DG MOSFETs -- 2.3.1. Transition voltage -- 2.3.2. Above-transition electrostatics -- 2.3.3. Drain current -- 2.3.4. Above-threshold capacitances -- 3. Modeling of Circular Gate MOSFETs -- 3.1. Subthreshold Electrostatics of GAA MOSFETs Based on 2D Solutions -- 3.2. Subthreshold Modeling of CirG MOSFETs -- 3.3. Above-Threshold Modeling of CirG MOSFETs -- 4. Unified Analytical Modeling of MugFETs -- 4.1. Isomorphic Modeling of CirG and SqG MOSFETs in Subthreshold -- 4.1.1. A simple long-channel model -- 4.1.2. Short-channel modeling of CirG and SqG devices in subthreshold -- 4.1.3. Rectangular gate and trigate MOSFETs -- 4.2. Modeling of GAA MOSFETs in Strong Inversion -- 4.2.1. Strong inversion electrostatics in DG MOSFETs -- 4.2.2. Strong inversion electrostatics in SqG MOSFETs -- 4.2.3. Strong inversion charge, drain current and capacitances -- 4.2.4. Strong inversion electrostatics in other multigate devices MOSFETs -- 5. Modeling of Quantum Mechanical Effects in MugFETs -- 5.1.1. Quantum confinement modeling in DG MOSFETs -- 5.2. Quantum confinement modeling in CirG MOSFETs -- Acknowledgment -- References -- 2. Compact modeling of Double-gate MOSFET (DG MOSFET) transistors -- 2.1. Drain current and charge model for long channel DG MOSFETs -- 2.1.1. Symmetric Double Gate MOSFET -- 2.1.2. Asymmetric Double Gate MOSFET -- 2.1.3. Smoothing functions for Q0 -- 2.1.4. Interpolation functions -- 2.1.5. Drain current model -- 2.1.6. Results and discussion -- 2.2. Short channel model for symmetric DG MOSFET -- 2.2.1. Velocity saturation -- 2.2.2. Series resistances.
2.2.3. Channel length modulation -- 2.2.4. DIBL effect -- 2.2.5. Results and discussion -- 3. Analytical modeling of Triple-gate, II-gateFETs, and -gateFETs devices -- 3.1. Introduction -- 3.1.1. Structure -- 3.1.2. Process -- 3.1.3. Modeling considerations -- 3.2. Long channels -- 3.2.1. Interface coupling model in FET transistors -- 3.2.2. Effect on the interface conductions -- 3.3. Short channels TGFETs -- 3.3.1. Derivation of the potential -- 3.3.2. Calculation of the subthreshold current -- 3.3.3. Device scalability -- 3.4. Conclusions -- Appendix A. Fourier Series Coefficients -- Acknowledgments -- References -- Author Index.
Abstract:
This book consists of four chapters to address at different modeling levels for different nanoscale MOS structures (Single- and Multi-Gate MOSFETs). The collection of these chapters in the book are attempted to provide a comprehensive coverage on the different levels of electrostatics and transport modeling for these devices, and relationships between them. In particular, the issue of quantum transport approaches, analytical predictive 2D/3D modeling and design-oriented compact modeling. It should be of interests to researchers working on modeling at any level, to provide them with a clear explanation of theapproaches used and the links with modeling techniques for either higher or lower levels.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Genre:
Added Author:
Electronic Access:
Click to View