
Materials for Biofuels.
Title:
Materials for Biofuels.
Author:
Ragauskas, Arthur J.
ISBN:
9789814513289
Personal Author:
Physical Description:
1 online resource (355 pages)
Series:
Materials and Energy
Contents:
CONTENTS -- Perface -- Chapter 1 What is Biomass -- 1. Introduction -- 2. Drivers for Biomass -- 3. Biomass Types -- 4. Understanding Lignocellulosic Biomass -- 4.1. Composition of lignocellulosic biomass -- 4.2. Physical and chemical characteristics of lignocellulosic biomass -- 4.2.1. Cellulose -- 4.2.2. Hemicellulose -- 4.2.3. Lignin -- 4.2.4. Ash content and inorganic element profiles -- 4.2.5. Extractive content -- 4.2.6. Elemental composition -- 4.2.7. Heating values -- Acknowledgments -- References -- Chapter 2 Biomass Recalcitrance and the Contributing Cell Wall Factors -- 1. Introduction -- 2. Structural Features -- 3. Molecular Features -- 3.1. Cellulose crystallinity -- 3.2. Cellulose degree of polymerization -- 3.3. Cellulose accessibility -- 4. Chemical Features -- 4.1. Lignin -- 4.2. Hemicellulose -- 4.3. Pectin -- 4.4. Acetyl groups -- References -- Chapter 3 Reduction of Biomass Recalcitrance via Water/Acid Pretreatments -- 1. Introduction -- 2. Technical Process of DAP and HTP -- 2.1. Dilute acid pretreatment -- 2.2. Hydrothermal pretreatment -- 3. Hemicelluloses Hydrolysis and Porosity during DAP and HTP -- 4. Cellulose Crystallinity and Degree of Polymerization during DAP and HTP -- 5. Lignin Behavior during DAP and HTP -- 6. Pseudo-lignin Formation -- 7. Conclusions and Outlook -- Acknowledgments -- References -- Chapter 4 Reduction of Biomass Recalcitrance via Organosolv Pretreatments -- 1. Introduction -- 2. Overview of Organosolv Pretreatment -- 3. Mechanism of Organosolv Pretreatment for Reduction of Recalcitrance -- 4. Cellulose Behavior during Organosolv Pretreatment -- 5. Lignin Behavior during Organosolv Pretreatment -- 6. Conclusions and Outlook -- Acknowledgments -- References -- Chapter 5 Reduction of Biomass Recalcitrance via Ionic Liquid Pretreatments -- 1. Introduction -- 1.1. What are ionic liquids?.
1.2. What biofuels are possible from IL pretreatments -- 2. Biomass Solubility -- 2.1. Solubility and stability of wood and wood biopolymers in ILs -- 2.2. Solubility of wood in IL-based organic electrolytes -- 3. IL-Aided Fractionation as a Pretreatment for Saccharification -- 4. Tolerance of Enzymes/Microorganisms to IL Systems -- 5. Ionic Liquid Recyclability and Recycling Strategies -- 6. Challenges and Future Outlook -- References -- Chapter 6 Enzymatic Deconstruction of Lignocellulose to Fermentable Sugars -- 1. Introduction -- 2. Enzymatic System -- 2.1. Cellulase enzyme system -- 2.2. Hemicellulase enzyme system -- 2.3. Lignin modifying enzymes -- 2.4. Pectin degrading enzymes -- 3. Cellulose Enzymatic Saccharification -- 3.1. Enzyme behavior in hydrolysis -- 3.2. Cellulase adsorption and desorption -- 3.3. Carbohydrate-bonding modules -- 3.4. Trichoderma reesei system -- 4. Factors Influencing Lignocelluloses Enzymatic Hydrolysis -- 4.1. Experimental conditions involved factors -- 4.2. Substrate features involved factors -- 4.3. Enzyme related factors -- 5. Strategies to Enhance Enzymatic Hydrolysis -- 5.1. Synergistic effects on enzymatic hydrolysis -- 5.2. Additives and surfactants -- 6. Conclusions and Outlook -- Acknowledgments -- References -- Chapter 7 Fermentation to Bioethanol/Biobutanol -- 1. Introduction -- 2. Biochemical Fermenting Microorganisms and Developments -- 2.1. Yeast-Saccharomyces cerevisiae -- 2.2. Bacteria-Zymomonas mobilis -- 2.3. Genetically engineered microorganisms -- 2.3.1. Pentose metabolism in yeast, bacteria and fungi -- 2.3.2. Metabolic engineering of yeast strains -- 2.3.3. Engineering of Z. mobilis for xylose and arabinose metabolism -- 2.3.4. Engineering of Escherichia coli for ethanol/butanol production -- 2.3.5. Engineering K. oxytoca for ethanol production.
3. Direct Ethanol Fermentation Processing Strategies -- 3.1. Separate hydrolysis and fermentation (SHF) -- 3.2. Simultaneous saccharification and fermentation (SSF) -- 3.3. Simultaneous saccharification and co-fermentation (SSCF) -- 3.4. Consolidated bioprocessing (CBP) -- 4. Biomass-derived Syngas Fermentation to Biofuels -- 4.1. Biomass gasification -- 4.2. Metabolic pathways and biochemical reactions -- 4.3. Reactor design for syngas fermentation -- 4.4. Important factors affecting syngas fermentation -- 4.4.1. Inhibitory compounds -- 4.4.2. Mass transfer -- 4.4.3. pH and temperature -- 4.4.4. Types of microorganism and growth media -- 4.4.5. Industrial-scale syngas fermentation and economics -- 5. Biobutanol Fermentation -- 6. Summary and Outlook -- Acknowledgments -- References -- Chapter 8 Pyrolysis of Biomass to Bio-oils -- 1. Introduction -- 2. Lignocellulose -- 2.1. Cellulose -- 2.2. Hemicelluloses -- 2.3. Lignin -- 3. Pyrolysis of Biomass Components -- 3.1 Pyrolysis of lignin -- 3.1.1. Gas products of pyrolysis of lignin -- 3.1.2. Liquid products of pyrolysis of lignin -- 3.2. Pyrolysis of cellulose -- 3.3. Pyrolysis of hemicellulose -- 3.4. Pyrolysis of tannin -- 4. Characterization Methods of Pyrolysis Oil -- 4.1. FT-IR analysis of lignin pyrolysis oil -- 4.2. NMR analysis of pyrolysis oil -- 4.3. Elemental analysis, viscosity, acidity, heating value and solid residue of pyrolysis oil -- Acknowledgments -- References -- Chapter 9 Upgrade of Bio-Oil to Bio-Fuel and Bio-Chemical -- 1. Introduction -- 2. Aging Process of Pyrolysis Oils -- 3. Upgrade Pyrolysis Oil with Zeolites -- 3.1. Influences of Si/Al ratios of zeolites on the properties of upgraded pyrolysis oils -- 3.2. Influences of frameworks of zeolites on the properties of upgraded pyrolysis oils -- 4. Hydrodeoxygenation of Pyrolysis Oils.
4.1. Catalysts used in hydrodeoxygenation process -- 4.2. Sulfided catalyst -- 4.3. Noble metal catalyst -- 4.3.1. Platinum -- 4.3.2. Palladium -- 4.3.3. Rhodium -- 4.3.4. Ruthenium -- Acknowledgments -- References -- Chapter 10 Corrosion Issues in Biofuels -- 1. Introduction -- 2. Corrosion -- 3. Constituents of Biofuels and Their Potential Relationships to Corrosiveness to Steels -- 3.1 Corrosion issues in ethanol and methanol biofuels -- 3.1.1. Chloride contamination of FGE -- 3.1.2. Effects of water concentration on corrosion and SCC of steels in methanol and ethanol biofuels -- 3.1.3. Understanding the mechanisms of effects of water on corrosion and stress corrosion cracking in methanol and ethanol biofuels -- 3.1.4. Role of dissolved oxygen in corrosion and stress corrosion cracking of carbon steels in ethanol biofuels -- 3.1.5. Corrosive effects of organic impurities in fuel grade ethanol -- 3.1.6. Corrosion of materials in ethanol/gasoline blended fuels -- 3.2. Corrosion issues in biodiesel -- 3.2.1. Microbial corrosion in biodiesel -- 3.2.2. Stress corrosion cracking in biodiesel -- 3.3. Corrosion issues in bio-oils or pyrolysis oils -- 3.3.1. Effect of water content and temperature on pyrolysis oil corrosivity -- 4. Conclusions -- References -- Chapter 11 Incorporation of Biofuels Technology into a Pulp Mill -- 1. Introduction -- 2. Biofuels Landscape in the United States -- 3. Biorefinery Concepts -- 3.1. The conversion pathways -- 3.1.1. Solid biomass gasification -- 3.1.2. Gasification-based biorefineries integrated with pulp mills -- 3.1.3. Fast pyrolysis -- 3.1.4. Acid hydrolysis and fermentation -- 3.1.5. Enzymatic hydrolysis and fermentation -- 4. Lignin and Its Opportunities in Biorefineries -- 4.1. Lignin sources in biorefinery concepts -- 4.1.1. Lignin from Kraft pulping process -- 4.1.2. Lignin from sulfite pulping process.
4.1.3. Other lignin production technologies -- 5. Future of Biorefining in Pulp Mills -- Acknowledgments -- References -- Chapter 12 Integrated Possibilities of Producing Biofuels in Chemical Pulping -- 1. Introduction -- 1.1. Pulping processes -- 1.2. Possibilities of pulping-based biofuel production -- 2. Autohydrolysis of Wood Chips -- 2.1. Basic considerations -- 2.2. Autohydrolysate-based products -- 3. By-Products of Kraft Pulping -- 3.1. Extractives -- 3.2. Lignin -- 4. Thermochemical Treatment of Black Liquor -- 4.1. General aspects -- 4.2. Gasification -- 4.3. Liquefaction -- 5. By-Products of Acid Sulfite Pulping -- 6. Conclusions -- References -- Index.
Abstract:
This invaluable book provides a broad and detailed introduction to the fascinating and hot research subject of transformation of biomass-related materials to biofuels. Biofuel production can be categorized into a variety of novel conversion and refinery development technologies. However, biomass recalcitrance is the biggest challenge blocking the way in biofuel conversion. This book provides an enlightening view of the frontiers in leading pretreatments, downstream enzymatic hydrolysis, fermentation technology, corrosion issues in biofuel and merging biofuels technology into a pulp mill to pave the way for future large-scale biofuel production.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Genre:
Electronic Access:
Click to View