Cover image for Beyond the Standard Model of Elementary Particle Physics.
Beyond the Standard Model of Elementary Particle Physics.
Title:
Beyond the Standard Model of Elementary Particle Physics.
Author:
Nagashima, Yorikiyo.
ISBN:
9783527665051
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (654 pages)
Contents:
Beyond the Standard Model of Elementary Particle Physics -- Contents -- Preface -- Acknowledgments -- Glossary -- Chapter 1 Higgs -- 1.1 Introduction -- 1.2 Higgs Interactions -- 1.2.1 Standard Model -- 1.2.2 Lagrangian After Symmetry Breaking -- 1.2.3 Decay Modes -- 1.3 Mass -- 1.3.1 Predictions from EW Data -- 1.3.2 Vacuum stability -- 1.3.3 Theoretical Upper Limit -- 1.4 Little and Big Hierarchy Problem -- 1.5 Higgs in the Supersymmetry -- 1.5.1 Two Higgs Doublets -- 1.5.2 Coupling Strengths of MSSM Higgs -- 1.5.3 Mass Spectrum of MSSM Higgs -- 1.6 Is the Higgs Elementary? -- 1.6.1 Technicolor Model -- 1.6.2 Little Higgs Model -- 1.7 Production and Detection of Higgs -- 1.7.1 Higgsstrahlung e-e+ → hZ -- 1.7.2 W Boson Fusion -- 1.7.3 Productions at the Hadron Collider -- 1.7.4 Signals at LHC -- 1.7.5 Higgs Detection Methods -- 1.7.6 Discovery of Higgs -- 1.7.7 SM Higgs? -- 1.7.8 MSSM Higgs and Future Prospect -- 1.8 Summary -- Chapter 2 Neutrino -- 2.1 Introduction -- 2.2 Neutrino Mass -- 2.2.1 Mass Matrix -- 2.2.2 Left-Right Symmetric Model -- 2.3 Electromagnetic Interaction -- 2.4 Neutrino Mixing -- 2.5 Neutrino Oscillation -- 2.5.1 Two-Flavor Oscillation -- 2.5.2 Atmospheric Neutrino -- 2.5.3 Accelerator Experiments -- 2.6 Underground Detectors -- 2.7 Solar Neutrino -- 2.7.1 The Solar Puzzle -- 2.7.2 Matter Oscillation -- 2.7.3 Reactor Experiment -- 2.8 Three-Flavor Oscillation -- 2.8.1 PMNS Matrix -- 2.8.2 Summary of Experimental Data -- 2.8.3 CP Violation and Mass Hierarchy -- 2.8.4 Future Prospects -- 2.9 Double Beta Decay -- 2.9.1 The Effective Majorana Mass -- 2.9.2 Current Status -- 2.9.3 To Design an Experiment -- 2.9.4 Experimental Apparatus -- 2.10 Supernova Neutrino -- 2.10.1 Stellar Evolution -- 2.10.2 Feedback to Particle Physics -- Chapter 3 Grand Unified Theories -- 3.1 Introduction -- 3.2 Why GUTs?.

3.2.1 Weinberg Angle in GUTs -- 3.2.2 Quantization of the Electric Charge -- 3.2.3 Triangle Anomaly -- 3.3 SU(5) -- 3.3.1 Fermion Representation -- 3.3.2 Representation of the Gauge Particle -- 3.3.3 Symmetry Breakdown -- 3.3.4 Predictions -- 3.4 SO(10) -- 3.4.1 Left-Right Symmetric World -- 3.4.2 New Gauge Bosons Z' and W' -- 3.5 Hierarchy Problem -- 3.6 SUSY GUT -- Chapter 4 Supersymmetry I: Basics -- 4.1 Introduction -- 4.1.1 Toy Model -- 4.1.2 Field Theoretical Operators -- 4.2 Two-Component Formalism -- 4.2.1 Majorana Fields -- 4.2.2 SUSY Operators -- 4.2.3 Superspace -- 4.3 Chiral Superfield -- 4.3.1 Products of Chiral Superfields -- 4.4 Vector Superfields -- 4.4.1 Field Strength -- 4.5 Action -- 4.5.1 SUSY Invariant Action -- 4.5.2 Kinetic Energy of Chiral Superfield -- 4.5.3 Superpotential -- 4.5.4 Lagrangian of the Chiral Fields -- 4.5.5 Kinetic Energy of Vector Field -- 4.6 Gauge Interaction -- 4.6.1 Global U(1) Transformation -- 4.6.2 Local U(1) Transformation -- 4.6.3 Non-Abelian Interaction -- 4.7 Summary of SUSY Lagrangian -- 4.8 Spontaneous Symmetry Breaking -- 4.8.1 D-Term Breaking -- 4.8.2 F-Term Breaking -- Chapter 5 Supersymmetry II: Phenomenology -- 5.1 Introduction -- 5.2 Minimum Supersymmetric Standard Model -- 5.2.1 Particle Spectrum -- 5.2.2 Interactions -- 5.2.3 Constraints -- 5.2.4 SUSY Breaking -- 5.2.5 Higgs Potential -- 5.3 Minimum SUGRA -- 5.3.1 Soft- SUSY Breaking -- 5.3.2 Mass Formula -- 5.3.3 μ Problem -- 5.4 GMSB -- 5.4.1 Messenger Particles -- 5.4.2 Mass Formula -- 5.4.3 Features of GMSB -- 5.5 AMSB and Extra Dimension -- 5.6 Summary of Mass Spectra -- 5.7 Searches for Sparticles -- 5.7.1 Production Mechanism -- 5.7.2 Sleptons -- 5.7.3 Charginos and Neutralinos -- 5.7.4 LSP -- 5.7.5 Gluino and Squarks -- 5.7.6 Stop -- 5.7.7 R-hadrons -- 5.7.8 Gravitino -- 5.8 Current Status.

Chapter 6 Extra Dimension -- 6.1 Introduction -- 6.2 KK Tower -- 6.2.1 Effective Coupling Strength in 4D -- 6.3 Chiral Fermions -- 6.3.1 Orbifold S1/Z2 -- 6.3.2 Mass Generation and Localization -- 6.3.3 Hierarchy -- 6.3.4 Split Fermion Scenario -- 6.4 Gauge Field in ED -- 6.4.1 Action in 4D -- 6.4.2 Coupling Strength -- 6.4.3 Gauge-Higgs Unification -- 6.5 Gravitational Field -- 6.5.1 Decomposition of the Gravitational Fields -- 6.6 Warped Extra Dimension -- 6.6.1 Anti-de Sitter Space AdS5 -- 6.6.2 RS1 Scenario -- 6.6.3 RS2 scenario -- 6.6.4 Gravitons in the RS Model -- 6.6.5 Signals for Warped ED -- 6.7 Universal Extra Dimension (UED) -- 6.7.1 General Features -- 6.7.2 Selection Rules -- 6.7.3 Constraints -- 6.7.4 Signals for UED -- 6.8 Searches for Generic ED -- 6.8.1 Astrophysical Constraints on ADD Models -- 6.8.2 Collider Experiments on ADD Models -- 6.8.3 TeV-1 Extra Dimension Model: -- 6.9 Black hole production -- Chapter 7 Axion -- 7.1 Soliton -- 7.1.1 Kink -- 7.1.2 Vortex -- 7.1.3 Winding Number -- 7.1.4 Spacetime Where the Soliton Lives -- 7.1.5 Instanton -- 7.1.6 θ Vacuum -- 7.1.7 Electroweak Vacua -- 7.2 Strong CP Problem -- 7.2.1 Anomaly -- 7.2.2 Chiral Transformation and the Mass Term -- 7.2.3 U(1) problem -- 7.3 Why Do We Need the Axion? -- 7.3.1 PQ Symmetry and the Standard Axion -- 7.3.2 Invisible Axion -- 7.4 Constraints on Invisible Axions -- 7.4.1 Coolant of the Stellar Evolution -- 7.4.2 Axion as the Dark Matter -- 7.4.3 Misalignment axion -- 7.5 Laboratory Axion Searches -- Chapter 8 Cosmology I: Big Bang Universe -- 8.1 Why Do We Study Cosmology? -- 8.2 Cosmic Equation -- 8.2.1 Robertson-Walker Metric -- 8.2.2 Friedmann Equation -- 8.3 Expanding Universe -- 8.3.1 Redshift of Light -- 8.3.2 Redshift of Particles -- 8.3.3 Cosmic Parameters -- 8.4 Thermal Universe -- 8.4.1 Thermodynamics.

8.4.2 Radiation and Matter Dominance -- 8.4.3 Time versus Temperature -- 8.4.4 Overview of Thermal History -- 8.5 Cosmic Distance, Horizon -- 8.5.1 Distance -- 8.5.2 Horizon -- 8.6 Genesis -- 8.6.1 Matter Universe -- 8.6.2 Baryogenesis -- 8.6.3 Leptogenesis -- 8.6.4 Neutrino Decoupling -- 8.6.5 Big Bang Nucleosynthesis -- 8.7 Last Scattering -- 8.7.1 Radiation-Matter Equality -- 8.7.2 Recombination -- 8.7.3 Dark Age -- 8.8 Inflation -- 8.8.1 Slow Rolling and Reheating -- 8.8.2 Horizon Problem -- 8.8.3 Flatness Problem -- 8.8.4 Monopole Problem -- Chapter 9 Cosmology II: Structure Formation -- 9.1 Galaxy Distribution -- 9.1.1 Introduction -- 9.1.2 Boltzmann Equation -- 9.1.3 Growth of the Fluctuation -- 9.1.4 Dark Matter -- 9.1.5 Jeans Wavelength of the Neutrino -- 9.1.6 Power Spectrum -- 9.1.7 Initial fluctuation -- 9.1.8 Effects of Neutrino Mass -- 9.1.9 Primordial Fluctuation -- 9.2 CMB Anisotropy -- 9.2.1 Overview -- 9.2.2 Sachs-Wolfe Effect -- 9.2.3 Acoustic Oscillations -- 9.2.4 Doppler Effect -- 9.2.5 Silk Damping -- 9.2.6 Outcome of CMB Measurements -- 9.2.7 Polarization -- Chapter 10 Dark Matter -- 10.1 Cosmic Budget -- 10.2 Evidences of Dark Matter -- 10.2.1 Rotation Curves of Spiral Galaxies -- 10.2.2 Virial Mass of the Clusters -- 10.2.3 X-ray Emitting Clusters -- 10.2.4 Gravitational Lens -- 10.3 Relics of the Big Bang -- 10.3.1 Freeze-Out -- 10.3.2 Hot Dark Matter -- 10.3.3 Cold Dark Matter -- 10.3.4 Candidates for the Dark Matter -- 10.4 How to Detect? -- 10.4.1 Indirect methods -- 10.4.2 Production by Accelerators -- 10.4.3 WIMPS Wind -- 10.5 Searches for DMs in the Halo -- 10.5.1 General -- 10.5.2 Bolometer -- 10.5.3 Xe Detector -- 10.5.4 Current Status -- Chapter 11 Dark Energy -- 11.1 Dark Energy -- 11.1.1 Accelerating Universe -- 11.1.2 Cosmic Age -- 11.1.3 ΛCDM Model.

11.2 Cosmological Constant -- 11.3 Quintessence model -- 11.4 Other Dark Energy Models -- 11.5 How to Investigate the Dark Energy? -- Appendix A Virial Theorem -- Appendix B Chandrasekhar Mass -- Appendix C Production of KK Gravitons -- Appendix D Homotopy -- Appendix E General Relativity -- E.1 Geodesic Equation -- E.2 Ricci Tensor and Scalar -- E.3 Gauge Degrees of Freedom -- E.4 Gravitational Waves -- Appendix F Tensor Spherical Harmonic Function -- Appendix G Destiny of the Cosmos -- Appendix H Answers to Some Problems -- References -- Color Plates -- Index.
Abstract:
A unique and comprehensive presentation on modern particle physics which stores the background knowledge on the big open questions beyond the standard model, as the existence of the Higgs-boson, or the nature of Dark Matter and Dark Energy.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: