Cover image for Nonlinear Parameter Optimization Using R Tools.
Nonlinear Parameter Optimization Using R Tools.
Title:
Nonlinear Parameter Optimization Using R Tools.
Author:
Nash, John C.
ISBN:
9781118883969
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (312 pages)
Contents:
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Optimization problem tasks and how they arise -- 1.1 The general optimization problem -- 1.2 Why the general problem is generally uninteresting -- 1.3 (Non-)Linearity -- 1.4 Objective function properties -- 1.4.1 Sums of squares -- 1.4.2 Minimax approximation -- 1.4.3 Problems with multiple minima -- 1.4.4 Objectives that can only be imprecisely computed -- 1.5 Constraint types -- 1.6 Solving sets of equations -- 1.7 Conditions for optimality -- 1.8 Other classifications -- References -- Chapter 2 Optimization algorithms-an overview -- 2.1 Methods that use the gradient -- 2.2 Newton-like methods -- 2.3 The promise of Newton's method -- 2.4 Caution: convergence versus termination -- 2.5 Difficulties with Newton's method -- 2.6 Least squares: Gauss-Newton methods -- 2.7 Quasi-Newton or variable metric method -- 2.8 Conjugate gradient and related methods -- 2.9 Other gradient methods -- 2.10 Derivative-free methods -- 2.10.1 Numerical approximation of gradients -- 2.10.2 Approximate and descend -- 2.10.3 Heuristic search -- 2.11 Stochastic methods -- 2.12 Constraint-based methods-mathematical programming -- References -- Chapter 3 Software structure and interfaces -- 3.1 Perspective -- 3.2 Issues of choice -- 3.3 Software issues -- 3.4 Specifying the objective and constraints to the optimizer -- 3.5 Communicating exogenous data to problem definition functions -- 3.5.1 Use of "global'' data and variables -- 3.6 Masked (temporarily fixed) optimization parameters -- 3.7 Dealing with inadmissible results -- 3.8 Providing derivatives for functions -- 3.9 Derivative approximations when there are constraints -- 3.10 Scaling of parameters and function -- 3.11 Normal ending of computations -- 3.12 Termination tests-abnormal ending.

3.13 Output to monitor progress of calculations -- 3.14 Output of the optimization results -- 3.15 Controls for the optimizer -- 3.16 Default control settings -- 3.17 Measuring performance -- 3.18 The optimization interface -- References -- Chapter 4 One-parameter root-finding problems -- 4.1 Roots -- 4.2 Equations in one variable -- 4.3 Some examples -- 4.3.1 Exponentially speaking -- 4.3.2 A normal concern -- 4.3.3 Little Polly Nomial -- 4.3.4 A hypothequial question -- 4.4 Approaches to solving 1D root-finding problems -- 4.5 What can go wrong? -- 4.6 Being a smart user of root-finding programs -- 4.7 Conclusions and extensions -- References -- Chapter 5 One-parameter minimization problems -- 5.1 The optimize() function -- 5.2 Using a root-finder -- 5.3 But where is the minimum? -- 5.4 Ideas for 1D minimizers -- 5.5 The line-search subproblem -- References -- Chapter 6 Nonlinear least squares -- 6.1 nls() from package stats -- 6.1.1 A simple example -- 6.1.2 Regression versus least squares -- 6.2 A more difficult case -- 6.3 The structure of the nls() solution -- 6.4 Concerns with nls() -- 6.4.1 Small residuals -- 6.4.2 Robustness-"singular gradient'' woes -- 6.4.3 Bounds with nls() -- 6.5 Some ancillary tools for nonlinear least squares -- 6.5.1 Starting values and self-starting problems -- 6.5.2 Converting model expressions to sum-of-squares functions -- 6.5.3 Help for nonlinear regression -- 6.6 Minimizing R,functions that compute sums of squares -- 6.7 Choosing an approach -- 6.8 Separable sums of squares problems -- 6.9 Strategies for nonlinear least squares -- References -- Chapter 7 Nonlinear equations -- 7.1 Packages and methods for nonlinear equations -- 7.1.1 BB -- 7.1.2 nleqslv -- 7.1.3 Using nonlinear least squares -- 7.1.4 Using function minimization methods.

7.2 A simple example to compare approaches -- 7.3 A statistical example -- References -- Chapter 8 Function minimization tools in the base R system -- 8.1 optim() -- 8.2 nlm() -- 8.3 nlminb() -- 8.4 Using the base optimization tools -- References -- Chapter 9 Add-in function minimization packages for R -- 9.1 Package optimx -- 9.1.1 Optimizers in optimx -- 9.1.2 Example use of optimx() -- 9.2 Some other function minimization packages -- 9.2.1 nloptr and nloptwrap -- 9.2.2 trust and trustOptim -- 9.3 Should we replace optim() routines? -- References -- Chapter 10 Calculating and using derivatives -- 10.1 Why and how -- 10.2 Analytic derivatives-by hand -- 10.3 Analytic derivatives-tools -- 10.4 Examples of use of R tools for differentiation -- 10.5 Simple numerical derivatives -- 10.6 Improved numerical derivative approximations -- 10.6.1 The Richardson extrapolation -- 10.6.2 Complex-step derivative approximations -- 10.7 Strategy and tactics for derivatives -- References -- Chapter 11 Bounds constraints -- 11.1 Single bound: use of a logarithmic transformation -- 11.2 Interval bounds: Use of a hyperbolic transformation -- 11.2.1 Example of the tanh transformation -- 11.2.2 A fly in the ointment -- 11.3 Setting the objective large when bounds are violated -- 11.4 An active set approach -- 11.5 Checking bounds -- 11.6 The importance of using bounds intelligently -- 11.6.1 Difficulties in applying bounds constraints -- 11.7 Post-solution information for bounded problems -- Appendix 11.A Function transfinite -- References -- Chapter 12 Using masks -- 12.1 An example -- 12.2 Specifying the objective -- 12.3 Masks for nonlinear least squares -- 12.4 Other approaches to masks -- References -- Chapter 13 Handling general constraints -- 13.1 Equality constraints -- 13.1.1 Parameter elimination.

13.1.2 Which parameter to eliminate? -- 13.1.3 Scaling and centering? -- 13.1.4 Nonlinear programming packages -- 13.1.5 Sequential application of an increasing penalty -- 13.2 Sumscale problems -- 13.2.1 Using a projection -- 13.3 Inequality constraints -- 13.4 A perspective on penalty function ideas -- 13.5 Assessment -- References -- Chapter 14 Applications of mathematical programming -- 14.1 Statistical applications of math programming -- 14.2 R packages for math programming -- 14.3 Example problem: L1 regression -- 14.4 Example problem: minimax regression -- 14.5 Nonlinear quantile regression -- 14.6 Polynomial approximation -- References -- Chapter 15 Global optimization and stochastic methods -- 15.1 Panorama of methods -- 15.2 R packages for global and stochastic optimization -- 15.3 An example problem -- 15.3.1 Method SANN from optim() -- 15.3.2 Package GenSA -- 15.3.3 Packages DEoptim and RcppDE -- 15.3.4 Package smco -- 15.3.5 Package soma -- 15.3.6 Package Rmalschains -- 15.3.7 Package rgenoud -- 15.3.8 Package GA -- 15.3.9 Package gaoptim -- 15.4 Multiple starting values -- References -- Chapter 16 Scaling and reparameterization -- 16.1 Why scale or reparameterize? -- 16.2 Formalities of scaling and reparameterization -- 16.3 Hobbs' weed infestation example -- 16.4 The KKT conditions and scaling -- 16.5 Reparameterization of the weeds problem -- 16.6 Scale change across the parameter space -- 16.7 Robustness of methods to starting points -- 16.7.1 Robustness of optimization techniques -- 16.7.2 Robustness of nonlinear least squares methods -- 16.8 Strategies for scaling -- References -- Chapter 17 Finding the right solution -- 17.1 Particular requirements -- 17.1.1 A few integer parameters -- 17.2 Starting values for iterative methods -- 17.3 KKT conditions -- 17.3.1 Unconstrained problems.

17.3.2 Constrained problems -- 17.4 Search tests -- References -- Chapter 18 Tuning and terminating methods -- 18.1 Timing and profiling -- 18.1.1 rbenchmark -- 18.1.2 microbenchmark -- 18.1.3 Calibrating our timings -- 18.2 Profiling -- 18.2.1 Trying possible improvements -- 18.3 More speedups of R computations -- 18.3.1 Byte-code compiled functions -- 18.3.2 Avoiding loops -- 18.3.3 Package upgrades - an example -- 18.3.4 Specializing codes -- 18.4 External language compiled functions -- 18.4.1 Building an R function using Fortran -- 18.4.2 Summary of Rayleigh quotient timings -- 18.5 Deciding when we are finished -- 18.5.1 Tests for things gone wrong -- References -- Chapter 19 Linking R to external optimization tools -- 19.1 Mechanisms to link R to external software -- 19.1.1 R functions to call external (sub)programs -- 19.1.2 File and system call methods -- 19.1.3 Thin client methods -- 19.2 Prepackaged links to external optimization tools -- 19.2.1 NEOS -- 19.2.2 Automatic Differentiation Model Builder (ADMB) -- 19.2.3 NLopt -- 19.2.4 BUGS and related tools -- 19.3 Strategy for using external tools -- References -- Chapter 20 Differential equation models -- 20.1 The model -- 20.2 Background -- 20.3 The likelihood function -- 20.4 A first try at minimization -- 20.5 Attempts with optimx -- 20.6 Using nonlinear least squares -- 20.7 Commentary -- Reference -- Chapter 21 Miscellaneous nonlinear estimation tools for R -- 21.1 Maximum likelihood -- 21.2 Generalized nonlinear models -- 21.3 Systems of equations -- 21.4 Additional nonlinear least squares tools -- 21.5 Nonnegative least squares -- 21.6 Noisy objective functions -- 21.7 Moving forward -- References -- Index.
Abstract:
Nonlinear Parameter Optimization Using R John C. Nash, Telfer School of Management, University of Ottawa, Canada A systematic and comprehensive treatment of optimization software using R In recent decades, optimization techniques have been streamlined by computational and artificial intelligence methods to analyze more variables, especially under non-linear, multivariable conditions, more quickly than ever before. Optimization is an important tool for decision science and for the analysis of physical systems used in engineering. Nonlinear Parameter Optimization with R explores the principal tools available in R for function minimization, optimization, and nonlinear parameter determination and features numerous examples throughout. Nonlinear Parameter Optimization with R: Provides a comprehensive treatment of optimization techniques Examines optimization problems that arise in statistics and how to solve them using R Enables researchers and practitioners to solve parameter determination problems Presents traditional methods as well as recent developments in R Is supported by an accompanying website featuring R code, examples and datasets Researchers and practitioners who have to solve parameter determination problems who are users of R but are novices in the field optimization or function minimization will benefit from this book. It will also be useful for scientists building and estimating nonlinear models in various fields such as hydrology, sports forecasting, ecology, chemical engineering, pharmaco-kinetics, agriculture, economics and statistics.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: