Cover image for Design and Fabrication of Self-Powered Micro-Harvesters : Rotating and Vibrated Micro-Power Systems.
Design and Fabrication of Self-Powered Micro-Harvesters : Rotating and Vibrated Micro-Power Systems.
Title:
Design and Fabrication of Self-Powered Micro-Harvesters : Rotating and Vibrated Micro-Power Systems.
Author:
Pan, C. T.
ISBN:
9781118487815
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (287 pages)
Contents:
Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgments -- Chapter 1 Introduction -- 1.1 Background -- 1.2 Energy Harvesters -- 1.2.1 Piezoelectric ZnO Energy Harvester -- 1.2.2 Vibrational Electromagnetic Generators -- 1.2.3 Rotary Electromagnetic Generators -- 1.2.4 NFES Piezoelectric PVDF Energy Harvester -- 1.3 Overview -- Chapter 2 Design and Fabrication of Flexible Piezoelectric Generators Based on ZnO Thin Films -- 2.1 Introduction -- 2.2 Characterization and Theoretical Analysis of Flexible ZnO-Based Piezoelectric Harvesters -- 2.2.1 Vibration Energy Conversion Model of Film-Based Flexible Piezoelectric Energy Harvester -- 2.2.2 Piezoelectricity and Polarity Test of Piezoelectric ZnO Thin Film -- 2.2.3 Optimal Thickness of PET Substrate -- 2.2.4 Model Solution of Cantilever Plate Equation -- 2.2.5 Vibration-Induced Electric Potential and Electric Power -- 2.2.6 Static Analysis to Calculate the Optimal Thickness of the PET Substrate -- 2.2.7 Model Analysis and Harmonic Analysis -- 2.2.8 Results of Model Analysis and Harmonic Analysis -- 2.3 The Fabrication of Flexible Piezoelectric ZnO Harvesters on PET Substrates -- 2.3.1 Bonding Process to Fabricate UV-Curable Resin Lump Structures on PET Substrates -- 2.3.2 Near-Field Electro-Spinning with Stereolithography Technique to Directly Write 3D UV-Curable Resin Patterns on PET Substrates -- 2.3.3 Sputtering of Al and ITO Conductive Thin Films on PET Substrates -- 2.3.4 Deposition of Piezoelectric ZnO Thin Films by Using RF Magnetron Sputtering -- 2.3.5 Testing a Single Energy Harvester under Resonant and Non-Resonant Conditions -- 2.3.6 Application of ZnO/PET-Based Generator to Flash Signal LED Module.

2.3.7 Design and Performance of a Broad Bandwidth Energy Harvesting System -- 2.4 Fabrication and Performance of Flexible ZnO/SUS304-Based Piezoelectric Generators -- 2.4.1 Deposition of Piezoelectric ZnO Thin Films on Stainless Steel Substrates -- 2.4.2 Single-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator -- 2.4.3 Double-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator -- 2.4.4 Characterization of ZnO/SUS304-Based Flexible Piezoelectric Generators -- 2.4.5 Structural and Morphological Properties of Piezoelectric ZnO Thin Films on Stainless Steel Substrates -- 2.4.6 Analysis of Adhesion of ZnO Thin Films on Stainless Steel Substrates -- 2.4.7 Electrical Properties of Single-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator -- 2.4.8 Characterization of Double-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator: Analysis and Modification of Back Surface of SUS304 -- 2.4.9 Electrical Properties of Double-Sided ZnO/SUS304-Based Piezoelectric Generator -- 2.5 Summary -- References -- Chapter 3 Design and Fabrication of Vibration-Induced Electromagnetic Microgenerators -- 3.1 Introduction -- 3.2 Comparisons between MCTG and SMTG -- 3.2.1 Magnetic Core-Type Generator (MCTG) -- 3.2.2 Sided Magnet-Type Generator (SMTG) -- 3.3 Analysis of Electromagnetic Vibration-Induced Microgenerators -- 3.3.1 Design of Electromagnetic Vibration-Induced Microgenerators -- 3.3.2 Analysis Mode of the Microvibration Structure -- 3.3.3 Analysis Mode of Magnetic Field -- 3.3.4 Evaluation of Various Parameters of Power Output -- 3.4 Analytical Results and Discussion -- 3.4.1 Analysis of Bending Stress within the Supporting Beam of the Spiral Microspring -- 3.4.2 Finite Element Models for Magnetic Density Distribution -- 3.4.3 Power Output Evaluation -- 3.5 Fabrication of Microcoil for Microgenerator.

3.5.1 Microspring and Induction Coil -- 3.5.2 Microspring and Magnet -- 3.6 Tests and Experiments -- 3.6.1 Measurement System -- 3.6.2 Measurement Results and Discussion -- 3.6.3 Comparison between Measured Results and Analytical Values -- 3.7 Conclusions -- 3.7.1 Analysis of Microgenerators and Vibration Mode and Simulation of the Magnetic Field -- 3.7.2 Fabrication of LTCC Microsensor -- 3.7.3 Measurement and Analysis Results -- 3.8 Summary -- References -- Chapter 4 Design and Fabrication of Rotary Electromagnetic Microgenerator -- 4.1 Introduction -- 4.1.1 Piezoelectric, Thermoelectric, and Electrostatic Generators -- 4.1.2 Vibrational Electromagnetic Generators -- 4.1.3 Rotary Electromagnetic Generators -- 4.1.4 Generator Processes -- 4.1.5 Lithographie Galvanoformung Abformung Process -- 4.1.6 Winding Processes -- 4.1.7 LTCC -- 4.1.8 Printed Circuit Board Processes -- 4.1.9 Finite-Element Simulation and Analytical Solutions -- 4.2 Case 1: Winding Generator -- 4.2.1 Design -- 4.2.2 Analytical Formulation -- 4.2.3 Simulation -- 4.2.4 Fabrication Process -- 4.2.5 Results and Discussion (1) -- 4.2.6 Results and Discussion (2) -- 4.3 Case 2: LTCC Generator -- 4.3.1 Simulation -- 4.3.2 Analytical Theorem of Microgenerator Electromagnetism -- 4.3.3 Simplification -- 4.3.4 Analysis of Vector Magnetic Potential -- 4.3.5 Analytical Solutions for Power Generation -- 4.4 Fabrication -- 4.4.1 LTCC Process -- 4.4.2 Magnet Process -- 4.4.3 Measurement Set-up -- 4.5 Results and Discussion -- 4.5.1 Design -- 4.5.2 Analytical Solutions -- 4.5.3 Fabrication -- References -- Chapter 5 Design and Fabrication of Electrospun PVDF Piezo-Energy Harvesters -- 5.1 Introduction -- 5.2 Fundamentals of Electrospinning Technology -- 5.2.1 Introduction to Electrospinning -- 5.2.2 Alignment and Assembly of Nanofibers.

5.3 Near-Field Electrospinning -- 5.3.1 Introduction and Background -- 5.3.2 Principles of Operation -- 5.3.3 Process and Experiment -- 5.3.4 Summary -- 5.4 Continuous NFES -- 5.4.1 Introduction and Background -- 5.4.2 Principles of Operation -- 5.4.3 Controllability and Continuity -- 5.4.4 Process Characterization -- 5.4.5 Summary -- 5.5 Direct-Write Piezoelectric Nanogenerator -- 5.5.1 Introduction and Background -- 5.5.2 Polyvinylidene Fluoride -- 5.5.3 Theoretical Studies for Realization of Electrospun PVDF Nanofibers -- 5.5.4 Electrospinning of PVDF Nanofibers -- 5.5.5 Detailed Discussion of Process Parameters -- 5.5.6 Experimental Realization of PVDF Nanogenerator -- 5.5.7 Summary -- 5.6 Materials, Structure, and Operation of Nanogenerator with Future Prospects -- 5.6.1 Material and Structural Characteristics -- 5.6.2 Operation of Nanogenerator -- 5.6.3 Summary and Future Prospects -- 5.7 Case Study: Large-Array Electrospun PVDF Nanogenerators on a Flexible Substrate -- 5.7.1 Introduction and Background -- 5.7.2 Working Principle -- 5.7.3 Device Fabrication -- 5.7.4 Experimental Results -- 5.7.5 Summary -- 5.8 Conclusion -- 5.8.1 Near-Field Electrospinning -- 5.8.2 Continuous Near-Field Electrospinning -- 5.8.3 Direct-Write Piezoelectric PVDF -- 5.9 Future Directions -- 5.9.1 NFES Integrated Nanofiber Sensors -- 5.9.2 NFES One-Dimensional Sub-Wavelength Waveguide -- 5.9.3 NFES Biological Applications -- 5.9.4 Direct-Write Piezoelectric PVDF Nanogenerators -- References -- Index.
Abstract:
C. T. Pan National Sun Yat-Sen University, Taiwan Y. M. Hwang National Sun Yat-Sen University, Taiwan Liwei Lin University of California, Berkeley, USA Ying-Chung Chen National Sun Yat-Sen University, Taiwan.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: