
Enzymatic Fuel Cells : From Fundamentals to Applications.
Title:
Enzymatic Fuel Cells : From Fundamentals to Applications.
Author:
Luckarift, Heather R.
ISBN:
9781118869864
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (490 pages)
Contents:
Enzymatic Fuel Cells: From Fundamentals to Applications -- Contents -- Preface -- Contributors -- 1 Introduction -- List of Abbreviations -- 2 Electrochemical Evaluation of Enzymatic Fuel Cells and Figures of Merit -- 2.1 Introduction -- 2.2 Electrochemical Characterization -- 2.2.1 Open-Circuit Measurements -- 2.2.2 Cyclic Voltammetry -- 2.2.3 Electron Transfer -- 2.2.4 Polarization Curves -- 2.2.5 Power Curves -- 2.2.6 Electrochemical Impedance Spectroscopy -- 2.2.7 Multienzyme Cascades -- 2.2.8 Rotating Disk Electrode Voltammetry -- 2.3 Outlook -- Acknowledgment -- List of Abbreviations -- References -- 3 Direct Bioelectrocatalysis: Oxygen Reduction for Biological Fuel Cells -- 3.1 Introduction -- 3.2 Mechanistic Studies of Intramolecular Electron Transfer -- 3.2.1 Determining the Redox Potential of MCO -- 3.2.2 Effect of pHand Inhibitors on the Electrochemistry of MCO -- 3.3 Achieving DET of MCO by Rational Design -- 3.3.1 Surface Analysis of Enzyme-Modified Electrodes -- 3.3.2 Design of MCO-Modified Biocathodes Based on Direct Bioelectrocatalysis -- 3.3.3 Design of MCO-Modified "Air-Breathing" Biocathodes -- 3.4 Outlook -- Acknowledgments -- List of Abbreviations -- References -- 4 Anodic Catalysts for Oxidation of Carbon-Containing Fuels -- 4.1 Introduction -- 4.2 Oxidases -- 4.2.1 Electron Transfer Mechanisms of Glucose Oxidase -- 4.3 Dehydrogenases -- 4.3.1 The NADH Reoxidation Issue -- 4.3.2 Mediators for Electrochemical Oxidation of NADH -- 4.3.3 Electropolymerization of Azines -- 4.3.4 Alcohol Dehydrogenase as a Model System -- 4.4 PQQ-Dependent Enzymes -- 4.5 Outlook -- Acknowledgment -- List of Abbreviations -- References -- 5 Anodic Bioelectrocatalysis: From Metabolic Pathways to Metabolons -- 5.1 Introduction -- 5.2 Biological Fuels -- 5.3 Promiscuous Enzymes Versus Multienzyme Cascades Versus Metabolons.
5.3.1 Promiscuous Enzymes -- 5.3.2 Multienzyme Cascades -- 5.3.3 Metabolons -- 5.4 Direct and Mediated Electron Transfer -- 5.5 Fuels -- 5.5.1 Hydrogen -- 5.5.2 Ethanol -- 5.5.2.1 Protein Engineering -- 5.5.3 Methanol -- 5.5.4 Methane -- 5.5.5 Glucose -- 5.5.5.1 Early Work -- 5.5.5.2 Recent Work -- 5.5.5.3 Miniature and Implantable Glucose BFCs -- 5.5.5.4 Promiscuous Enzymes for Glucose Anodes -- 5.5.6 Sucrose -- 5.5.7 Trehalose -- 5.5.8 Fructose -- 5.5.9 Lactose -- 5.5.10 Lactate -- 5.5.11 Pyruvate -- 5.5.12 Glycerol -- 5.5.13 Fatty Acids -- 5.6 Outlook -- Acknowledgment -- List of Abbreviations -- References -- 6 Bioelectrocatalysis of Hydrogen Oxidation/Reduction by Hydrogenases -- 6.1 Introduction -- 6.2 Hydrogenases -- 6.3 Biological Fuel Cells Using Hydrogenases: Electrocatalysis -- 6.4 Electrocatalysis by Functional Mimics of Hydrogenases -- 6.4.1 [FeFe]-Hydrogenase Models -- 6.4.2 [NiFe]-Hydrogenase Models -- 6.4.3 Incorporation of Outer Coordination Sphere Features -- 6.5 Outlook -- Acknowledgments -- List of Abbreviations -- References -- 7 Protein Engineering for Enzymatic Fuel Cells -- 7.1 Engineering Enzymes for Catalysis -- 7.2 Engineering Other Properties of Enzymes -- 7.2.1 Stability -- 7.2.2 Size -- 7.2.3 Cofactor Specificity -- 7.3 Enzyme Immobilization and Self-Assembly -- 7.3.1 Engineering for Supermolecular Assembly -- 7.4 Artificial Metabolons -- 7.4.1 DNA-Templated Metabolons -- 7.5 Outlook -- List of Abbreviations -- References -- 8 Purification and Characterization of Multicopper Oxidases for Enzyme Electrodes -- 8.1 Introduction -- 8.2 General Considerations for MCO Expression and Purification -- 8.3 MCO Production and Expression Systems -- 8.4 MCO Purification -- 8.5 Copper Stability and Specific Considerations for MCO Production -- 8.6 Spectroscopic Monitoring and Characterization of Copper Centers -- 8.7 Outlook.
Acknowledgment -- List of Abbreviations -- References -- 9 Mediated Enzyme Electrodes -- 9.1 Introduction -- 9.2 Fundamentals -- 9.2.1 Electron Transfer Overpotentials -- 9.2.2 Electron Transfer Rate -- 9.2.3 Enzyme Kinetics -- 9.3 Types of Mediation -- 9.3.1 Freely Diffusing Mediator in Solution -- 9.3.2 Mediation in Cross-Linked Redox Polymers -- 9.3.2.1 The "Wired" Glucose Oxidase Anode -- 9.3.3 Further Redox Polymer Mediation -- 9.3.4 Mediation in Other Immobilized Layers -- 9.4 Aspects of Mediator Design I: Mediator Overpotentials -- 9.4.1 Considering Species Potentials in a Methanol-Oxygen BFC -- 9.4.2 The Earliest Methanol-Oxidizing BFC Anodes -- 9.4.3 A Four-Enzyme Methanol-Oxidizing Anode -- 9.5 Aspects of Mediator Design II: Saturated Mediator Kinetics -- 9.5.1 An Immobilized Laccase Cathode -- 9.5.2 Potential of the Osmium Redox Polymer -- 9.5.3 Concentration of Redox Sites in the Mediator Film -- 9.6 Outlook -- List of Abbreviations -- References -- 10 Hierarchical Materials Architectures for Enzymatic Fuel Cells -- 10.1 Introduction -- 10.2 Carbon Nanomaterials and the Construction of the Bio-Nano Interface -- 10.2.1 Carbon Black Nanomaterials -- 10.2.2 Carbon Nanotubes -- 10.2.3 Graphene -- 10.2.4 CNT-Decorated Porous Carbon Architectures -- 10.2.5 Buckypaper -- 10.3 Biotemplating: The Assembly of Nanostructured Biological-Inorganic Materials -- 10.3.1 Protein-Mediated 3D Biotemplating -- 10.4 Fabrication of Hierarchically Ordered 3D Materials for Enzyme and Microbial Electrodes -- 10.4.1 Chitosan-CNT Conductive Porous Scaffolds -- 10.4.2 Polymer/Carbon Architectures Fabricated Using Solid Templates -- 10.5 Incorporating Conductive Polymers into Bioelectrodes for Fuel Cell Applications -- 10.5.1 Conductive Polymer-Facilitated DET Between Laccase and a Conductive Surface -- 10.5.2 Materials Design for MFC -- 10.6 Outlook.
Acknowledgment -- List of Abbreviations -- References -- 11 Enzyme Immobilization for Biological Fuel Cell Applications -- 11.1 Introduction -- 11.2 Immobilization by Physical Methods -- 11.2.1 Adsorption -- 11.3 Entrapment as a Pre- and Post-Immobilization Strategy -- 11.3.1 Stabilization via Encapsulation -- 11.3.2 Redox Hydrogels -- 11.4 Enzyme Immobilization via Chemical Methods -- 11.4.1 Covalent Immobilization -- 11.4.2 Molecular Tethering -- 11.4.3 Self-Assembly -- 11.5 Orientation Matters -- 11.6 Outlook -- Acknowledgment -- List of Abbreviations -- References -- 12 Interrogating Immobilized Enzymes in Hierarchical Structures -- 12.1 Introduction -- 12.2 Estimating the Bound Active (Redox) Enzyme -- 12.2.1 Modeling the Performance of Immobilized Redox Enzymes in Flow-Through Mode to Estimate the Concentration of Substrate at the Enzyme Surface -- 12.3 Probing the Distribution of Immobilized Enzyme Within Hierarchical Structures -- 12.4 Probing the Immediate Chemical Microenvironments of Enzymes in Hierarchical Structures -- 12.5 Enzyme Aggregation in a Hierarchical Structure -- 12.6 Outlook -- Acknowledgment -- List of Abbreviations -- References -- 13 Imaging and Characterization of the Bio-Nano Interface -- 13.1 Introduction -- 13.2 Imaging the Bio-Nano Interface -- 13.2.1 Scanning Electron Microscopy -- 13.2.1.1 Backscattered Electrons -- 13.2.1.2 Three-Dimensional Imaging -- 13.2.2 Transmission Electron Microscopy -- 13.3 Characterizing the Bio-Nano Interface -- 13.3.1 X-Ray Photoelectron Spectroscopy -- 13.3.1.1 Specific Considerations for Analysis of Enzymes Using XPS -- 13.3.1.2 Instrumentation and Experimental Details for XPS of Biomolecules -- 13.3.1.3 Elemental Quantification for Fingerprinting Enzymes -- 13.3.1.4 High-Resolution Analysis for Fingerprinting Enzymes -- 13.3.1.5 Probing Molecular Interactions.
13.3.1.6 Probing Physical Architecture of Thin Films Using ARXPS -- 13.3.2 Surface Plasmon Resonance -- 13.4 Interrogating the Bio-Nano Interface -- 13.4.1 Atomic Force Microscopy -- 13.4.1.1 Basic Principles of AFM -- 13.4.1.2 AFM Techniques -- 13.4.1.3 Examples of AFM Analysis and Applications -- 13.5 Outlook -- Acknowledgment -- List of Abbreviations -- References -- 14 Scanning Electrochemical Microscopy for Biological Fuel Cell Characterization -- 14.1 Introduction -- 14.2 Theory and Operation -- 14.3 Ultramicroelectrodes -- 14.3.1 Approach Curve Method of Analysis -- 14.4 Modes of SECM Operation -- 14.4.1 Negative Feedback Mode -- 14.4.2 Positive Feedback Mode -- 14.4.3 Generation-Collection Mode -- 14.4.4 Induced Transfer Mode -- 14.5 SECM for BFC Anodes -- 14.5.1 Enzyme-Mediated Feedback Imaging -- 14.5.1.1 Imaging Glucose Oxidase Activity Using FB Mode -- 14.5.2 Generation-Collection Mode Imaging -- 14.5.2.1 Imaging GOx Using SG/TC Mode -- 14.6 SECM for BFC Cathodes -- 14.6.1 Tip Generation-Substrate Collection Mode -- 14.6.1.1 Imaging ORR by TG/SC Mode -- 14.6.1.2 Imaging Laccase by SG/TC Mode -- 14.6.2 Redox Competition Mode -- 14.6.2.1 Imaging ORR by RC Mode -- 14.7 Catalyst Screening Using SECM -- 14.8 SECM for Membranes -- 14.9 Probing Single Enzyme Molecules Using SECM -- 14.10 Combining SECM with Other Techniques -- 14.10.1 Atomic Force Microscopy -- 14.10.2 Confocal Laser Scanning Microscopy -- 14.11 Outlook -- List of Abbreviations -- References -- 15 In Situ X-Ray Spectroscopy of Enzymatic Catalysis: Laccase-Catalyzed Oxygen Reduction -- 15.1 Introduction -- 15.2 Defining the Enzyme/Electrode Interface -- 15.3 Direct Electron Transfer Versus Mediated Electron Transfer -- 15.3.1 Mediated Electron Transfer -- 15.4 The Blue Copper Oxidases -- 15.4.1 Laccase -- 15.5 In Situ XAS -- 15.5.1 Os L3-Edge -- 15.5.2 uMET.
15.5.3 Mediated Electron Transfer.
Abstract:
Summarizes research encompassing all of the aspects required to understand, fabricate and integrate enzymatic fuel cells Contributions span the fields of bio-electrochemistry and biological fuel cell research Teaches the reader to optimize fuel cell performance to achieve long-term operation and realize commercial applicability Introduces the reader to the scientific aspects of bioelectrochemistry including electrical wiring of enzymes and charge transfer in enzyme fuel cell electrodes Covers unique engineering problems of enzyme fuel cells such as design and optimization.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View