Cover image for Mechanical Vibration and Shock Analysis, Mechanical Shock.
Mechanical Vibration and Shock Analysis, Mechanical Shock.
Title:
Mechanical Vibration and Shock Analysis, Mechanical Shock.
Author:
Lalanne, Christian.
ISBN:
9781118931134
Personal Author:
Edition:
3rd ed.
Physical Description:
1 online resource (466 pages)
Series:
ISTE
Contents:
Cover -- Title Page -- Contents -- Foreword to Series -- Introduction -- List of Symbols -- Chapter 1. Shock Analysis -- 1.1. Definitions -- 1.1.1. Shock -- 1.1.2. Transient signal -- 1.1.3. Jerk -- 1.1.4. Simple (or perfect) shock -- 1.1.5. Half-sine shock -- 1.1.6. Versed sine (or haversine) shock -- 1.1.7. Terminal peak sawtooth (TPS) shock (or final peak sawtooth (FPS)) -- 1.1.8. Initial peak sawtooth (IPS) shock -- 1.1.9. Square shock -- 1.1.10. Trapezoidal shock -- 1.1.11. Decaying sinusoidal pulse -- 1.1.12. Bump test -- 1.1.13. Pyroshock -- 1.2. Analysis in the time domain -- 1.3. Temporal moments -- 1.4. Fourier transform -- 1.4.1. Definition -- 1.4.2. Reduced Fourier transform -- 1.4.3. Fourier transforms of simple shocks -- 1.4.4. What represents the Fourier transform of a shock? -- 1.4.5. Importance of the Fourier transform -- 1.5. Energy spectrum -- 1.5.1. Energy according to frequency -- 1.5.2. Average energy spectrum -- 1.6. Practical calculations of the Fourier transform -- 1.6.1. General -- 1.6.2. Case: signal not yet digitized -- 1.6.3. Case: signal already digitized -- 1.6.4. Adding zeros to the shock signal before the calculation of its Fourier transform -- 1.6.5. Windowing -- 1.7. The interest of time-frequency analysis -- 1.7.1. Limit of the Fourier transform -- 1.7.2. Short term Fourier transform (STFT) -- 1.7.3. Wavelet transform -- Chapter 2. Shock Response Spectrum -- 2.1. Main principles -- 2.2. Response of a linear one-degree-of-freedom system -- 2.2.1. Shock defined by a force -- 2.2.2. Shock defined by an acceleration -- 2.2.3. Generalization -- 2.2.4. Response of a one-degree-of-freedom system to simple shocks -- 2.3. Definitions -- 2.3.1. Response spectrum -- 2.3.2. Absolute acceleration SRS -- 2.3.3. Relative displacement shock spectrum -- 2.3.4. Primary (or initial) positive SRS.

2.3.5. Primary (or initial) negative SRS -- 2.3.6. Secondary (or residual) SRS -- 2.3.7. Positive (or maximum positive) SRS -- 2.3.8. Negative (or maximum negative) SRS -- 2.3.9. Maximax SRS -- 2.4. Standardized response spectra -- 2.4.1. Definition -- 2.4.2. Half-sine pulse -- 2.4.3. Versed sine pulse -- 2.4.4. Terminal peak sawtooth pulse -- 2.4.5. Initial peak sawtooth pulse -- 2.4.6. Square pulse -- 2.4.7. Trapezoidal pulse -- 2.5. Choice of the type of SRS -- 2.6. Comparison of the SRS of the usual simple shapes -- 2.7. SRS of a shock defined by an absolute displacement of the support -- 2.8. Influence of the amplitude and the duration of the shock on its SRS -- 2.9. Difference between SRS and extreme response spectrum (ERS) -- 2.10. Algorithms for calculation of the SRS -- 2.11. Subroutine for the calculation of the SRS -- 2.12. Choice of the sampling frequency of the signal -- 2.13. Example of use of the SRS -- 2.14. Use of SRS for the study of systems with several degrees of freedom -- 2.15. Damage boundary curve -- Chapter 3. Properties of Shock Response Spectra -- 3.1. Shock response spectra domains -- 3.2. Properties of SRS at low frequencies -- 3.2.1. General properties -- 3.2.2. Shocks with zero velocity change -- 3.2.3. Shocks with ΔV = 0 and ΔD ≠ 0 at the end of a pulse -- 3.2.4. Shocks with ΔV = 0 and ΔD = 0 at the end of a pulse -- 3.2.5. Notes on residual spectrum -- 3.3. Properties of SRS at high frequencies -- 3.4. Damping influence -- 3.5. Choice of damping -- 3.6. Choice of frequency range -- 3.7. Choice of the number of points and their distribution -- 3.8. Charts -- 3.9. Relation of SRS with Fourier spectrum -- 3.9.1. Primary SRS and Fourier transform -- 3.9.2. Residual SRS and Fourier transform -- 3.9.3. Comparison of the relative severity of several shocks using their Fourier spectra and their shock response spectra.

3.10. Care to be taken in the calculation of the spectra -- 3.10.1. Main sources of errors -- 3.10.2. Influence of background noise of the measuring equipment -- 3.10.3. Influence of zero shift -- 3.11. Specific case of pyroshocks -- 3.11.1. Acquisition of the measurements -- 3.11.2. Examination of the signal before calculation of the SRS -- 3.11.3. Examination of the SRS -- 3.12. Pseudo-velocity shock spectrum -- 3.12.1. Hunt's relationship -- 3.12.2. Interest of PVSS -- 3.13. Use of the SRS for pyroshocks -- 3.14. Other propositions of spectra -- 3.14.1. Pseudo-velocity calculated from the energy transmitted -- 3.14.2. Pseudo-velocity from the "input" energy at the end of a shock -- 3.14.3. Pseudo-velocity from the unit "input" energy -- 3.14.4. SRS of the "total" energy -- Chapter 4. Development of Shock Test Specifications -- 4.1. Introduction -- 4.2. Simplification of the measured signal -- 4.3. Use of shock response spectra -- 4.3.1. Synthesis of spectra -- 4.3.2. Nature of the specification -- 4.3.4. Amplitude -- 4.3.5. Duration -- 4.3.6. Difficulties -- 4.4. Other methods -- 4.4.1. Use of a swept sine -- 4.4.2. Simulation of SRS using a fast swept sine -- 4.4.3. Simulation by modulated random noise -- 4.4.4. Simulation of a shock using random vibration -- 4.4.5. Least favorable response technique -- 4.4.6. Restitution of an SRS by a series of modulated sine pulses -- 4.5. Interest behind simulation of shocks on shaker using a shock spectrum -- Chapter 5. Kinematics of Simple Shocks -- 5.1. Introduction -- 5.2. Half-sine pulse -- 5.2.1. General expressions of the shock motion -- 5.2.2. Impulse mode -- 5.2.3. Impact mode -- 5.3. Versed sine pulse -- 5.4. Square pulse -- 5.5. Terminal peak sawtooth pulse -- 5.6. Initial peak sawtooth pulse -- Chapter 6. Standard Shock Machines -- 6.1. Main types -- 6.2. Impact shock machines.

6.3. High impact shock machines -- 6.3.1. Lightweight high impact shock machine -- 6.3.2. Medium weight high impact shock machine -- 6.4. Pneumatic machines. -- 6.5. Specific testing facilities -- 6.6. Programmers -- 6.6.1. Half-sine pulse -- 6.6.2. TPS shock pulse -- 6.6.3. Square pulse - trapezoidal pulse -- 6.6.4. Universal shock programmer -- Chapter 7. Generation of Shocks Using Shakers -- 7.1. Principle behind the generation of a signal with a simple shape versus time -- 7.2. Main advantages of the generation of shock using shakers -- 7.3. Limitations of electrodynamic shakers -- 7.3.1. Mechanical limitations -- 7.3.2. Electronic limitations -- 7.4. Remarks on the use of electrohydraulic shakers -- 7.5. Pre- and post-shocks -- 7.5.1. Requirements -- 7.5.2. Pre-shock or post-shock -- 7.5.3. Kinematics of the movement for symmetric pre- and post-shock -- 7.5.4. Kinematics of the movement for a pre-shock or a post-shock alone -- 7.5.5. Abacuses -- 7.5.6. Influence of the shape of pre- and post-pulses -- 7.5.7. Optimized pre- and post-shocks -- 7.6. Incidence of pre- and post-shocks on the quality of simulation -- 7.6.1. General -- 7.6.2. Influence of the pre- and post-shocks on the time history response of a one-degree-of-freedom system -- 7.6.3. Incidence on the shock response spectrum -- Chapter 8. Control of a Shaker Using a Shock Response Spectrum -- 8.1. Principle of control using a shock response spectrum -- 8.1.1. Problems -- 8.1.2. Parallel filter method -- 8.1.3. Current numerical methods -- 8.2. Decaying sinusoid -- 8.2.1. Definition -- 8.2.2. Response spectrum -- 8.2.3. Velocity and displacement -- 8.2.4. Constitution of the total signal -- 8.2.5. Methods of signal compensation -- 8.2.6. Iterations -- 8.3. D.L. Kern and C.D. Hayes' function -- 8.3.1. Definition -- 8.3.2. Velocity and displacement -- 8.4. ZERD function.

8.4.1. Definition -- 8.4.2. Velocity and displacement -- 8.4.3. Comparison of ZERD waveform with standard decaying sinusoid -- 8.4.4. Reduced response spectra -- 8.5. WAVSIN waveform -- 8.5.1. Definition -- 8.5.2. Velocity and displacement -- 8.5.3. Response of a one-degree-of-freedom system -- 8.5.4. Response spectrum -- 8.5.5. Time history synthesis from shock spectrum -- 8.6. SHOC waveform -- 8.6.1. Definition -- 8.6.2. Velocity and displacement -- 8.6.3. Response spectrum -- 8.6.4. Time history synthesis from shock spectrum -- 8.7. Comparison of WAVSIN, SHOC waveforms and decaying sinusoid -- 8.8. Waveforms based on the cosm(x) window -- 8.9. Use of a fast swept sine -- 8.10. Problems encountered during the synthesis of the waveforms -- 8.11. Criticism of control by SRS -- 8.12. Possible improvements -- 8.12.1. IES proposal -- 8.12.2. Specification of a complementary parameter -- 8.12.3. Remarks on the properties of the response spectrum -- 8.13. Estimate of the feasibility of a shock specified by its SRS -- 8.13.1. C.D. Robbins and E.P. Vaughan's method -- 8.13.2. Evaluation of the necessary force, power and stroke -- Chapter 9. Simulation of Pyroshocks -- 9.1. Simulations using pyrotechnic facilities -- 9.2. Simulation using metal to metal impact -- 9.3. Simulation using electrodynamic shakers -- 9.4. Simulation using conventional shock machines -- Appendix. Similitude in Mechanics -- A1. Conservation of materials -- A2. Conservation of acceleration and stress -- Mechanical Shock Tests: A Brief Historical Background -- Bibliography -- Index -- Summary of other Volumes in the series.
Abstract:
This volume considers the shock response spectrum, its various definitions, properties and the assumptions involved in its calculation. In developing the practical application of these concepts, the forms of shock most often used with test facilities are presented together with their characteristics and indications of how to establish test configurations comparable with those in the real, measured environment. This is followed by a demonstration of how to meet these specifications using standard laboratory equipment - shock machines, electrodynamic exciters driven by a time signal or a response spectrum - with a discussion on the limitations, advantages and disadvantages of each method.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: