Cover image for Mechanical Vibration and Shock Analysis, Random Vibration.
Mechanical Vibration and Shock Analysis, Random Vibration.
Title:
Mechanical Vibration and Shock Analysis, Random Vibration.
Author:
Lalanne, Christian.
ISBN:
9781118931165
Personal Author:
Edition:
3rd ed.
Physical Description:
1 online resource (649 pages)
Series:
ISTE
Contents:
Cover -- Title Page -- Copyright -- Contents -- Foreword to Series -- Introduction -- List of Symbols -- Chapter 1. Statistical Properties of a Random Process -- 1.1. Definitions -- 1.1.1. Random variable -- 1.1.2. Random process -- 1.2. Random vibration in real environments -- 1.3. Random vibration in laboratory tests -- 1.4. Methods of random vibration analysis -- 1.5. Distribution of instantaneous values -- 1.5.1. Probability density -- 1.5.2. Distribution function -- 1.6. Gaussian random process -- 1.7. Rayleigh distribution -- 1.8. Ensemble averages: through the process -- 1.8.1. n order average -- 1.8.2. Centered moments -- 1.8.3. Variance -- 1.8.4. Standard deviation -- 1.8.5. Autocorrelation function -- 1.8.6. Cross-correlation function -- 1.8.7. Autocovariance -- 1.8.8. Covariance -- 1.8.9. Stationarity -- 1.9. Temporal averages: along the process -- 1.9.1. Mean -- 1.9.2. Quadratic mean - rms value -- 1.9.3. Moments of order n -- 1.9.4. Variance - standard deviation -- 1.9.5. Skewness -- 1.9.6. Kurtosis -- 1.9.7. Crest Factor -- 1.9.8. Temporal autocorrelation function -- 1.9.9. Properties of the autocorrelation function -- 1.9.10. Correlation duration -- 1.9.11. Cross-correlation -- 1.9.12. Cross-correlation coefficient -- 1.9.13. Ergodicity -- 1.10. Significance of the statistical analysis (ensemble or temporal) -- 1.11. Stationary and pseudo-stationary signals -- 1.13. Sliding mean -- 1.14. Test of stationarity -- 1.14.1. The reverse arrangements test (RAT) -- 1.14.2. The runs test -- 1.15 Identification of shocks and/or signal problems -- 1.16. Breakdown of vibratory signal into "events": choice of signal samples -- 1.17. Interpretation and taking into account of environment variation -- Chapter 2. Random Vibration Properties in the Frequency Domain -- 2.1. Fourier transform -- 2.2. Power spectral density -- 2.2.1. Need.

2.2.2. Definition -- 2.3. Amplitude Spectral Density -- 2.4. Cross-power spectral density -- 2.5. Power spectral density of a random process -- 2.6. Cross-power spectral density of two processes -- 2.7. Relationship between the PSD and correlation function of a process -- 2.8. Quadspectrum - cospectrum -- 2.9. Definitions -- 2.9.1. Broadband process -- 2.9.2. White noise -- 2.9.3. Band-limited white noise -- 2.9.4. Narrow band process -- 2.9.5. Colors of noise -- 2.10. Autocorrelation function of white noise -- 2.11. Autocorrelation function of band-limited white noise -- 2.12. Peak factor -- 2.13. Effects of truncation of peaks of acceleration signal on the PSD -- 2.14. Standardized PSD/density of probability analogy -- 2.15. Spectral density as a function of time -- 2.16. Sum of two random processes -- 2.17. Relationship between the PSD of the excitation and the response of a linear system -- 2.18. Relationship between the PSD of the excitation and the cross-power spectral density of the response of a linear system -- 2.19. Coherence function -- 2.20. Transfer function calculation from random vibration measurements -- 2.20.1. Theoretical relations -- 2.20.2. Presence of noise on the input -- 2.20.3. Presence of noise on the response -- 2.20.4. Presence of noise on the input and response -- 2.20.5. Choice of transfer function -- Chapter 3. Rms Value of Random Vibration -- 3.1. Rms value of a signal as a function of its PSD -- 3.2. Relationships between the PSD of acceleration, velocity and displacement -- 3.3. Graphical representation of the PSD -- 3.4. Practical calculation of acceleration, velocity and displacement rms values -- 3.4.1. General expressions -- 3.4.2. Constant PSD in frequency interval -- 3.4.3. PSD comprising several horizontal straight line segments -- 3.4.4. PSD defined by a linear segment of arbitrary slope.

3.4.5. PSD comprising several segments of arbitrary slopes -- 3.5. Rms value according to the frequency -- 3.6. Case of periodic signals -- 3.7. Case of a periodic signal superimposed onto random noise -- Chapter 4. Practical Calculation of the Power Spectral Density -- 4.1. Sampling of signal -- 4.2. PSD calculation methods -- 4.2.1. Use of the autocorrelation function -- 4.2.2. Calculation of the PSD from the rms value of a filtered signal -- 4.2.3. Calculation of PSD starting from a Fourier transform -- 4.3. PSD calculation steps -- 4.3.1. Maximum frequency -- 4.3.2. Extraction of sample of duration T -- 4.3.3. Averaging -- 4.3.4. Addition of zeros -- 4.4. FFT -- 4.5. Particular case of a periodic excitation -- 4.6. Statistical error -- 4.6.1. Origin -- 4.6.2. Definition -- 4.7. Statistical error calculation -- 4.7.1. Distribution of the measured PSD -- 4.7.2. Variance of the measured PSD -- 4.7.3. Statistical error -- 4.7.4. Relationship between number of degrees of freedom, duration and bandwidth of analysis -- 4.7.5. Confidence interval -- 4.7.6. Expression for statistical error in decibels -- 4.7.7. Statistical error calculation from digitized signal -- 4.8. Influence of duration and frequency step on the PSD -- 4.8.1. Influence of duration -- 4.8.2. Influence of the frequency step -- 4.8.3. Influence of duration and of constant statistical error frequency step -- 4.9. Overlapping -- 4.9.1. Utility -- 4.9.2. Influence on the number of degrees of freedom -- 4.9.3. Influence on statistical error -- 4.9.4. Choice of overlapping rate -- 4.10. Information to provide with a PSD -- 4.11. Difference between rms values calculated from a signal according to time and from its PSD -- 4.12. Calculation of a PSD from a Fourier transform -- 4.13. Amplitude based on frequency: relationship with the PSD.

4.14. Calculation of the PSD for given statistical error -- 4.14.1. Case study: digitization of a signal is to be carried out -- 4.14.2. Case study: only one sample of an already digitized signal is available -- 4.15. Choice of filter bandwidth -- 4.15.1. Rules -- 4.15.2. Bias error -- 4.15.3. Maximum statistical error -- 4.15.4. Optimum bandwidth -- 4.16. Probability that the measured PSD lies between ± one standard deviation -- 4.17. Statistical error: other quantities -- 4.18. Peak hold spectrum -- 4.19. Generation of random signal of given PSD -- 4.19.1. Random phase sinusoid sum method -- 4.19.2. Inverse Fourier transform method -- 4.20. Using a window during the creation of a random signal from a PSD -- Chapter 5. Statistical Properties of Random Vibration in the Time Domain -- 5.1. Distribution of instantaneous values -- 5.2. Properties of derivative process -- 5.3. Number of threshold crossings per unit time -- 5.4. Average frequency -- 5.5. Threshold level crossing curves -- 5.6. Moments -- 5.7. Average frequency of PSD defined by straight line segments -- 5.7.1. Linear-linear scales -- 5.7.2. Linear-logarithmic scales -- 5.7.3. Logarithmic-linear scales -- 5.7.4. Logarithmic-logarithmic scales -- 5.8. Fourth moment of PSD defined by straight line segments -- 5.8.1. Linear-linear scales -- 5.8.2. Linear-logarithmic scales -- 5.8.3. Logarithmic-linear scales -- 5.8.4. Logarithmic-logarithmic scales -- 5.9. Generalization: moment of order n -- 5.9.1. Linear-linear scales -- 5.9.2. Linear-logarithmic scales -- 5.9.3. Logarithmic-linear scales -- 5.9.4. Logarithmic-logarithmic scales -- Chapter 6. Probability Distribution of Maxima of Random Vibration -- 6.1. Probability density of maxima -- 6.2. Moments of the maxima probability distribution -- 6.3. Expected number of maxima per unit time.

6.4. Average time interval between two successive maxima -- 6.5. Average correlation between two successive maxima -- 6.6. Properties of the irregularity factor -- 6.6.1. Variation interval -- 6.6.2. Calculation of irregularity factor for band-limited white noise -- 6.6.3. Calculation of irregularity factor for noise of form G = Const. f b -- 6.6.4. Case study: variations of irregularity factor for two narrowband signals -- 6.7. Error related to the use of Rayleigh's law instead of a complete probability density function -- 6.8. Peak distribution function -- 6.8.1. General case -- 6.8.2. Particular case of narrowband Gaussian process -- 6.9. Mean number of maxima greater than the given threshold (by unit time) -- 6.10. Mean number of maxima above given threshold between two times -- 6.11. Mean time interval between two successive maxima -- 6.12. Mean number of maxima above given level reached by signal excursion above this threshold -- 6.13. Time during which the signal is above a given value -- 6.14. Probability that a maximum is positive or negative -- 6.15. Probability density of the positive maxima -- 6.16. Probability that the positive maxima is lower than a given threshold -- 6.17. Average number of positive maxima per unit of time -- 6.18. Average amplitude jump between two successive extrema -- 6.19. Average number of inflection points per unit of time -- Chapter 7. Statistics of Extreme Values -- 7.1. Probability density of maxima greater than a given value -- 7.2. Return period -- 7.3. Peak lp expected among Np peaks -- 7.4. Logarithmic rise -- 7.5. Average maximum of Np peaks -- 7.6. Variance of maximum -- 7.7. Mode (most probable maximum value) -- 7.8. Maximum value exceeded with risk a -- 7.9. Application to the case of a centered narrowband normal process -- 7.9.1. Distribution function of largest peaks over duration T.

7.9.2. Probability that one peak at least exceeds a given thr.
Abstract:
The vast majority of vibrations encountered in the real environment are random in nature. Such vibrations are intrinsically complicated and this volume describes the process that enables us to simplify the required analysis, along with the analysis of the signal in the frequency domain. The power spectrum density is also defined, together with the requisite precautions to be taken in its calculations as well as the processes (windowing, overlapping) necessary to obtain improved results. An additional complementary method - the analysis of statistical properties of the time signal - is also described. This enables the distribution law of the maxima of a random Gaussian signal to be determined and simplifies the calculation of fatigue damage by avoiding direct peak counting.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: