
Smooth Dynamical Systems.
Title:
Smooth Dynamical Systems.
Author:
Irwin, M. C.
ISBN:
9789812810120
Personal Author:
Physical Description:
1 online resource (273 pages)
Series:
Advanced Series in Nonlinear Dynamics ; v.17
Advanced Series in Nonlinear Dynamics
Contents:
Contents -- Foreword -- Preface -- Introduction -- I. The simple pendulum -- II. A dissipative system -- III. The spherical pendulum -- IV. Vector fields and dynamical systems -- Chapter 1. Some Simple Examples -- I. Flows and homeomorphisms -- II. Orbits -- III. Examples of dynamical systems -- IV. Constructing systems -- V. Properties of orbits -- Appendix 1 -- I. Group actions -- Chapter 2. Equivalent Systems -- I. Topological conjugacy -- II. Homeomorphisms of the circle -- III. Flow equivalence and topological equivalence -- IV. Local equivalence -- V. Limit sets of flows -- VI. Limit sets of homeomorphisms -- VII. Non-wandering sets -- Appendix 2 -- I. Two topological lemmas -- II. Oriented orbits in Hausdorff spaces -- III. Compactification -- Chapter 3. Integration of Vector Fields -- I. Vector fields -- II. Velocity vector fields and integral flows -- III. Ordinary differential equations -- IV. Local integrals -- V. Global integrals -- Appendix 3 -- I. Integrals of perturbed vector fields -- II. First integrals -- Chapter 4. Linear Systems -- I. Linear flows on R" -- II. Linear automorphisms of R" -- III. The spectrum of a linear endomorphism -- IV. Hyperbolic linear automorphisms -- V. Hyperbolic linear vector fields -- Appendix 4 -- I. Spectral Theory -- Chapter 5. Linearization -- I. Regular points -- II. Hartman's theorem -- III. Hartman's theorem for flows -- IV. Hyperbolic closed orbits -- Appendix 5 -- I. Smooth linearization -- II. Liapunov stability -- III. The index of a fixed point -- Chapter 6. Stable Manifolds -- I. The stable manifold at a hyperbolic fixed point of a diffeomorphism -- II. Stable manifold theory for flows -- HI. The generalized stable manifold theorem -- Appendix 6 -- I. Perturbed stable manifolds -- Chapter 7. Stable Systems -- I. Low dimensional systems -- II. Anosov systems.
III. Characterization of structural stability -- IV. Density -- V. Omega stability -- VI. Bifurcation -- Appendix A. Theory of Manifolds -- I. Topological manifolds -- II. Smooth manifolds and maps -- III. Smooth vector bundles -- IV. The tangent bundle -- V. Immersions embeddings and submersions -- VI. Sections of vector bundles -- VII. Tensor bundles -- VIII. Riemannian manifolds -- Appendix B. Map Spaces -- I. Spaces of smooth maps -- II. Composition theorems -- III. Spaces of sections -- IV. Spaces of dynamical systems -- Appendix C. The Contraction Mapping Theorem -- Bibliography -- Subject Index.
Abstract:
This is a reprint of M C Irwin's beautiful book, first published in 1980. The material covered continues to provide the basis for current research in the mathematics of dynamical systems. The book is essential reading for all who want to master this area. Request Inspection Copy. Contents: Some Simple Examples; Equivalent Systems; Integration of Vector Fields; Linear Systems, Linearization, Stable Manifolds; Stable Systems; Appendices. Readership: Graduate students in mathematics.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View