Cover image for Spatio-Temporal Chaos & Vacuum Fluctuations of Quantized Fields.
Spatio-Temporal Chaos & Vacuum Fluctuations of Quantized Fields.
Title:
Spatio-Temporal Chaos & Vacuum Fluctuations of Quantized Fields.
Author:
Beck, Christian.
ISBN:
9789812778239
Personal Author:
Physical Description:
1 online resource (292 pages)
Series:
Advanced Series in Nonlinear Dynamics ; v.21

Advanced Series in Nonlinear Dynamics
Contents:
Contents -- Preface -- Introduction -- Chapter 1 Chaotic quantization of field theories -- 1.1 Stochastic quantization -- 1.2 Dynamical generation of the noise -- 1.3 The free Klein-Gordon field with chaotic noise -- 1.4 * Chaotic quantization in momentum space -- 1.5 * Gauge fields with chaotic noise -- 1.6 Distinguished properties of Tchebyscheff maps -- 1.7 * Graph theoretical method -- 1.8 * Perturbative approach -- Chapter 2 Chaotic strings -- 2.1 Motivation for chaotic strings -- 2.2 Anti-integrable limit of a continuum oN+1-theory -- 2.3 Possible generalizations -- 2.4 Yet another way to derive the chaotic string -- 2.5 Symmetry properties -- 2.6 Stability properties -- 2.7 Fixed points -- 2.8 * Spatio-temporal patterns -- Chapter 3 Vacuum energy of chaotic strings -- 3.1 Self energy of the N = 3 string -- 3.2 Self energy of the N = 2 string -- 3.3 Self energy for general N -- 3.4 Interaction energy of chaotic strings -- 3.5 * Double strings -- 3.6 * Rotating strings -- Chapter 4 Phase transitions and spontaneous symmetry breaking -- 4.1 Some general remarks on phase transitions -- 4.2 Vacuum expectation on 1-dimensional lattices -- 4.3 * Real scalar field on d-dimensional lattices -- 4.4 * Complex scalar field with U(1) symmetry -- 4.5 * Chaotic Higgs field with SU(2) symmetry -- Chapter 5 Stochastic interpretation of the uncertainty relation -- 5.1 Fluctuations of momenta and positions -- 5.2 Newton's law and self interaction -- 5.3 Coulomb forces and Laplacian coupling -- 5.4 Duality of interpretations -- 5.5 Feynman webs -- 5.6 Physical interpretation of discrete string symmetries -- 5.7 Fluctuations of the metric and a 1+1 dimensional model of quantum gravity -- Chapter 6 Generalized statistical mechanics approach -- 6.1 Heat bath of the vacuum -- 6.2 * States of maximum information.

6.3 * States of minimum correlation -- 6.4 Nonextensive statistical mechanics -- 6.5 Energy dependence of the entropic index q -- 6.6 Fluctuations of temperature -- 6.7 Klein-Gordon field with fluctuating momenta -- Chapter 7 Interaction energy of chaotic strings -- 7.1 Analogue of the Einstein field equations -- 7.2 The 3A string-electric interaction strengths of electrons and d-quarks -- 7.3 The 3B string -weak interaction strengths of neutrinos and u-quarks -- 7.4 High-precision prediction of the electroweak parameters -- 7.5 The 2A string -strong interaction strength at the W-mass scale -- 7.6 The 2B string -the lightest scalar glueball -- 7.7 The 2A - and 2B - strings - towards a Higgs mass prediction -- 7.8 Gravitational interaction -- Chapter 8 Self energy of chaotic strings -- 8.1 Self interacting scalar field equations -- 8.2 The 3A string -weak and strong interactions of heavy fermion flavors -- 8.3 The 3B string - further mixed states of heavy fermion flavors -- 8.4 The 2A string - further bosons -- 8.5 The 2B string - Yukawa interaction of the top quark -- 8.6 Yukawa and gravitational interactions of all quarks and leptons -- 8.7 Neutrino mass prediction -- 8.8 The 2A- and 2B- strings - bosonic mass ratios -- Chapter 9 Total vacuum energy of chaotic strings -- 9.1 Hadronization of free quarks -- 9.2 Mesonic states -- 9.3 Baryonic states -- 9.4 * CP violation -- 9.5 Planck scale interpretation -- 9.6 Dark matter -- Chapter 10 Grand unification -- 10.1 Supersymmetric versus non-supersymmetric theories -- 10.2 A supersymmetric scenario -- 10.3 A non-supersymmetric scenario -- 10.4 Final unification at the Planck scale -- 10.5 Simplification for sin2 0w = 1/2 -- 10.6 Bosons at the Planck scale -- 10.7 * Some thoughts on supersymmetry.

Chapter 11 11-dimensional space-time and quantum gravity -- 11.1 Chaotic dynamics in compactified dimensions -- 11.2 Quantized Einstein field equations -- 11.3 N = 1 strings and Minkowski space -- 11.4 Potentials for the N = 1 strings and inflation -- 11.5 Black holes Hawking radiation and duality -- 11.6 The limit E -> oo -- 11.7 Brief history of the universe - as seen from chaotic strings -- Chapter 12 Summary -- 12.1 Motivation and main results -- 12.2 The chaotic string dynamics -- 12.3 Vacuum energy of chaotic strings -- 12.4 Fixing standard model parameters -- 12.5 Numerical findings -- 12.6 Physical embedding -- 12.7 Conclusion -- Bibliography -- Index.
Abstract:
This book describes new applications for spatio-temporal chaotic dynamical systems in elementary particle physics and quantum field theories. The stochastic quantization approach of Parisi and Wu is extended to more general deterministic chaotic processes as generated by coupled map lattices. In particular, so-called chaotic strings are introduced as a suitable small-scale dynamics of vacuum fluctuations. This more general approach to second quantization reduces to the ordinary stochastic quantization scheme on large scales, but it also opens up interesting new perspectives: chaotic strings appear to minimize their vacuum energy for the observed numerical values of the free standard model parameters. Sample Chapter(s). Introduction (549 KB). Chapter 1.1: Stochastic quantization (214 KB). Chapter 1.2: Dynamical generation of the noise (311 KB). Chapter 1.3: The free Klein-Gordon field with chaotic noise (257 KB). Chapter 1.4: Chaotic quantization in momentum space (100 KB). Chapter 1.5: Gauge fields with chaotic noise (121 KB). Chapter 1.6: Distinguished properties of Tchebyscheff maps (209 KB). Chapter 1.7: Graph theoretical method (324 KB). Chapter 1.8: Perturbative approach (157 KB). Contents: Chaotic Quantization of Field Theories; Chaotic Strings; Vacuum Energy of Chaotic Strings; Phase Transitions and Spontaneous Symmetry Breaking; Stochastic Interpretation of the Uncertainty Relation; Generalized Statistical Mechanics Approach; Interaction Energy of Chaotic Strings; Self Energy of Chaotic Strings; Total Vacuum Energy of Chaotic Strings; Grand Unification; 11-Dimensional Space-Time and Quantum Gravity; Summary. Readership: Graduate students, researchers and academics involved in dynamical systems, statistical physics and high energy physics.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: