Cover image for Dynamics and Symmetry.
Dynamics and Symmetry.
Title:
Dynamics and Symmetry.
Author:
Field, Michael J.
ISBN:
9781860948541
Personal Author:
Physical Description:
1 online resource (492 pages)
Series:
Icp Advanced Texts in Mathematics ; v.3

Icp Advanced Texts in Mathematics
Contents:
Contents -- Preface -- 1. Groups -- 1.1 Definition of a group and examples -- 1.2 Homomorphisms, subgroups and quotient groups -- 1.2.1 Generators and relations for .nite groups -- 1.3 Constructions -- 1.4 Topological groups -- 1.5 Lie groups -- 1.5.1 The Lie bracket of vector fields -- 1.5.2 The Lie algebra of G -- 1.5.3 The exponential map of g -- 1.5.4 Additional properties of brackets and exp -- 1.5.5 Closed subgroups of a Lie group -- 1.6 Haarmeasure -- 2. Group Actions and Representations -- 2.1 Introduction -- 2.2 Groups and G-spaces -- 2.2.1 Continuous actions and G-spaces -- 2.3 Orbit spaces and actions -- 2.4 Twisted products -- 2.4.1 Induced G-spaces -- 2.5 Isotropy type and stratification by isotropy type -- 2.6 Representations -- 2.6.1 Averaging over G -- 2.7 Irreducible representations and the isotypic decomposition -- 2.7.1 C-representations -- 2.7.2 Absolutely irreducible representations -- 2.8 Orbit structure for representations -- 2.9 Slices -- 2.9.1 Slices for linear finite group actions -- 2.10 Invariant and equivariant maps -- 2.10.1 Smooth invariant and equivariant maps on representations -- 2.10.2 Equivariant vector fields and flows -- 3. Smooth G-manifolds -- 3.1 Proper G-manifolds -- 3.1.1 Proper free actions -- 3.2 G-vector bundles -- 3.3 Infinitesimal theory -- 3.4 Riemannianmanifolds -- 3.4.1 Exponential map of a complete Riemannian manifold -- 3.4.2 The tubular neighbourhood theorem -- 3.4.3 Riemannian G-manifolds -- 3.5 The differentiable slice theorem -- 3.6 Equivariant isotopy extension theorem -- 3.7 Orbit structure for G-manifolds -- 3.7.1 Closed filtration of M by isotropy type -- 3.8 The stratification of M by normal isotropy type -- 3.9 Stratified sets -- 3.9.1 Transversality to a Whitney stratification -- 3.9.2 Regularity of stratification by normal isotropy type.

3.10 Invariant Riemannian metrics on a compact Lie group -- 3.10.1 The adjoint representations -- 3.10.2 The exponential map -- 3.10.3 Closed subgroups of a Lie group -- 4. Equivariant Bifurcation Theory: Steady State Bifurcation -- 4.1 Introduction and preliminaries -- 4.1.1 Normalized families -- 4.2 Solution branches and the branching pattern -- 4.2.1 Stability of branching patterns -- 4.3 Symmetry breaking-theMISC -- 4.3.1 Symmetry breaking isotropy types -- 4.3.2 Maximal isotropy subgroup conjecture -- 4.4 Determinacy -- 4.4.1 Polynomial maps -- 4.4.2 Finite determinacy -- 4.5 The hyperoctahedral family -- 4.5.1 The representations (Rk,Hk) -- 4.5.2 Invariants and equivariants for Hk -- 4.5.3 Cubic equivariants for Hk -- 4.5.4 Bifurcation for cubic families -- 4.5.5 Subgroups of Hk -- 4.5.6 Some subgroups of the symmetric group -- 4.5.7 A big family of counterexamples to the MISC -- 4.5.8 Examples where P3G (Rk, Rk) = P3H k (Rk, Rk) -- 4.5.9 Stable solution branches of maximal index and trivial isotropy -- 4.5.10 An example with applications to phase transitions -- 4.6 Phase vector field and maps of hyperbolic type -- 4.6.1 Cubic polynomial maps -- 4.6.2 Phase vector field -- 4.6.3 Normalized families -- 4.6.4 Maps of hyperbolic type -- 4.6.5 The branching pattern of JQ -- 4.7 Transforming to generalized spherical polar coordinates -- 4.7.1 Preliminaries -- 4.7.2 Polar blowing-up -- 4.8 d(V,G)-determinacy, d(V,G) = 2,3 -- 4.8.1 d(V,G) = 2 but (V,G) is not 2-determined -- 4.9 Counting branches and finding their location -- 4.10 The symmetric and alternating groups -- 4.10.1 Preliminaries on Sk+1 -- 4.10.2 Zeroes of the phase vector field -- 4.10.3 Subgroups of Sk+1 -- 4.10.4 The sign and index functions -- 4.10.5 The case k + 1 odd -- 4.10.6 The case k + 1 even -- 4.11 The groups Sk+1 × Z2 and Ak+1 × Z2 -- 4.11.1 The zeros of PC.

4.11.2 Applications -- 4.12 Appendix: Proof of theorem on hyperbolic elements -- 4.13 Notes on Chapter 4 -- 5. Equivariant Bifurcation Theory: Dynamics -- 5.1 The invariant sphere theorem -- 5.1.1 Extensions and generalizations -- 5.1.2 Applying the invariant sphere theorem -- 5.2 The examples of dos Reis and Guckenheimer & Holmes -- 5.3 Steady state bifurcation to limit cycles -- 5.3.1 Axes of symmetry in Λ3 -- 5.3.2 Cubic equivariants -- 5.3.3 Homoclinic cycles -- 5.3.4 Stabilities and a 'hidden Hopf bifurcation' -- 5.4 Bifurcation to complex dynamics in dimension four -- 5.4.1 A basis for the action of on C4 -- 5.4.2 The representation (V,G) -- 5.4.3 Geometry of the representation (V,G) -- 5.4.4 Equilibria of a normalized cubic family -- 5.4.5 Dynamics close to the plane S -- 5.4.6 Random switching and dynamics near a network -- 5.4.7 Random switching theorem -- 5.5 The converse to the MISC -- 5.6 Hopf bifurcation and the invariant sphere theorem -- 5.6.1 G × S1-equivariant families -- 5.6.2 (Complex) phase vector field -- 5.6.3 Projective space and the Hopf fibration -- 5.6.4 Phase blowing-up -- 5.6.5 Transforming a cubic normal form -- 5.6.6 Invariant sphere theorem for the Hopf bifurcation -- 5.6.7 The algebraic Hopf theorem -- 5.7 Notes on Chapter 5 -- 6. Equivariant Transversality -- 6.1 Introduction -- 6.2 C∞-topologies on function spaces -- 6.2.1 Jet bundles -- 6.2.2 Natural constructions of C∞-topologies -- 6.3 Transversality -- 6.3.1 Basic theorems on transversality -- 6.4 Stratumwise transversality and stability -- 6.5 Reduction to a problem about solving equations -- 6.6 Invariants and equivariants -- 6.6.1 Smooth equivariants -- 6.6.2 Generators for equivariants -- 6.6.3 Smooth invariant theory -- 6.6.4 Smooth invariants and the orbit space -- 6.7 The universal variety -- 6.7.1 Changing generators.

6.8 Stratifications and semialgebraic sets -- 6.8.1 Semialgebraic sets -- 6.8.2 Semialgebraic stratifications -- 6.8.3 The canonical stratification -- 6.9 Canonical stratification of the universal variety -- 6.9.1 Partition of Σ by isotropy type -- 6.9.2 A first (restricted) de.nition of G-transversality -- 6.10 Stratifying Στ and U -- 6.11 Equivariant coordinate changes on V × Rs and W -- 6.12 Symmetries of the stratification A -- 6.13 Openness of equivariant transversality -- 6.14 Global definitions and results -- 6.14.1 G-transversality on a manifold -- 6.15 Solutions with specific isotropy type -- 6.16 Notes on Chapter 6 -- 7. Applications of G-transversality to Bifurcation Theory I -- 7.1 Weak stability and determinacy -- 7.1.1 Generic 1-parameter steady-state bifurcation theory -- 7.1.2 Bifurcation on absolutely irreducible representations -- 7.1.3 Symmetry breaking isotropy types -- 7.1.4 Weak determinacy -- 7.1.5 Weak stability of equivariant reversible vector fields -- 7.2 Jet transversality -- 7.2.1 An equivariant Thom jet transversality theorem -- 7.2.2 Invariance lemmas -- 7.3 Equivariant jet transversality for families -- 7.3.1 Intrinsic formulation of jet transversality -- 7.4 Stability and determinacy -- 7.4.1 A reformulation of the stability criterion -- 7.4.2 Example: computations for (R2,D4) -- 7.5 Higher order versions of G-transversality -- 7.6 Extensions to the case of non-finite G -- 7.6.1 Equilibrium G-orbits -- 7.6.2 Branching and stability for compact Lie groups -- 7.7 Notes on Chapter 7 -- 8. Equivariant Dynamics -- 8.1 Invariant G-orbits -- 8.1.1 Vector fields and flows -- 8.2 Stabilities and normal hyperbolicity -- 8.2.1 Diffeomorphisms -- 8.2.2 Flows -- 8.2.3 Genericity -- 8.2.4 Stable and unstable manifolds -- 8.3 Relative fixed and periodic sets for diffeomorphisms -- 8.3.1 Cartan subgroups of a compact Lie group G.

8.3.2 Dynamics on relative fixed & periodic sets -- 8.3.3 Isotopy lemmas -- 8.3.4 Stabilities of relative .xed sets and periodic orbits -- 8.3.5 Perturbation theory -- 8.4 Genericity theorems for equivariant diffeomorphisms -- 8.5 Equivariant vector fields -- 8.5.1 Relative equilibria -- 8.5.2 Stability of relative equilibria -- 8.5.3 Classification of relative periodic orbits -- 8.5.4 Periodic orbits and symmetry -- 8.5.5 Poincaré map for a relative periodic orbit -- 8.5.6 Perturbation lemmas for relative periodic orbits -- 8.6 Genericity theorems for equivariant vector fields -- 8.7 Notes on Chapter 8 -- 9. Dynamical Systems on G-manifolds -- 9.1 Skew products -- 9.1.1 Skew extensions of diffeomorphisms -- 9.1.2 Principal G-extensions -- 9.1.3 Skew products for flows and vector fields. -- 9.2 Gradient dynamics -- 9.2.1 Handlebundle decompositions of a G-manifold -- 9.2.2 Triangulations and handlebundle decompositions -- 9.3 G-subshifts of finite type -- 9.3.1 Stability and the realization of G-subshifts of .nite type as basic sets of equivariant diffeomorphisms -- 9.4 Suspensions -- 9.5 The inverse limit: turning maps into homeomorphisms -- 9.6 Solenoidal attractors -- 9.6.1 Finite graphs -- 9.6.2 Branched 1-manifolds -- 9.6.3 Neighbourhoods of branched 1-manifolds -- 9.6.4 Smooth graphs -- 9.6.5 Group actions on graphs -- 9.6.6 Twisted products and embeddings -- 9.6.7 Smooth Eulerian paths -- 9.6.8 Condition (W) -- 9.6.9 Symmetric hyperbolic attractors - simply connected case -- 9.6.10 Symmetric hyperbolic attractors - general case -- 9.6.11 Examples in dimension 3 -- 9.6.12 Non-free finite group actions on attractors -- 9.6.13 Symmetric hyperbolic attractors for flows -- 9.6.14 A tubular neighbourhood of the embedded suspension -- 9.6.15 Extensions to skew and twisted products -- 9.7 Equivariant Anosov diffeomorphisms -- 9.8 Notes on Chapter 9.

10. Applications of G-transversality to Bifurcation Theory II.
Abstract:
This book contains the first systematic exposition of the global and local theory of dynamics equivariant with respect to a (compact) Lie group. Aside from general genericity and normal form theorems on equivariant bifurcation, it describes many general families of examples of equivariant bifurcation and includes a number of novel geometric techniques, in particular, equivariant transversality. This important book forms a theoretical basis of future work on equivariant reversible and Hamiltonian systems. This book also provides a general and comprehensive introduction to codimension one equivariant bifurcation theory. In particular, it includes the bifurcation theory developed with Roger Richardson on subgroups of reflection groups and the Maximal Isotropy Subgroup Conjecture. A number of general results are also given on the global theory. Introductory material on groups, representations and G -manifolds are covered in the first three chapters of the book. In addition, a self-contained introduction of equivariant transversality is given, including necessary results on stratifications as well as results on equivariant jet transversality developed by Edward Bierstone. Sample Chapter(s). Chapter 1: Groups (309 KB). Contents: Groups; Group Actions and Representations; Smooth G -manifolds; Equivariant Bifurcation Theory: Steady State Bifurcation; Equivariant Bifurcation Theory: Dynamics; Equivariant Transversality; Applications of G -transversality to Bifurcation Theory I; Equivariant Dynamics; Dynamical Systems on G -manifolds; Applications of G -transversality to Bifurcation Theory II. Readership: Academics and graduate students in pure and applied mathematics.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: