Cover image for Empirical Evaluation Methods in Computer Vision.
Empirical Evaluation Methods in Computer Vision.
Title:
Empirical Evaluation Methods in Computer Vision.
Author:
Christensen, Henrik I.
ISBN:
9789812777423
Personal Author:
Physical Description:
1 online resource (170 pages)
Series:
Series in Machine Perception and Artificial Intelligence ; v.50

Series in Machine Perception and Artificial Intelligence
Contents:
Contents -- Foreword -- Chapter 1 Automated Performance Evaluation of Range Image Segmentation Algorithms -- 1.1. Introduction -- 1.2. Scoring the Segmented Regions -- 1.3. Segmentation Performance Curves -- 1.4. Training of Algorithm Parameters -- 1.5. Train-and-Test Performance Evaluation -- 1.6. Training Stage -- 1.7. Testing Stage -- 1.8. Summary and Discussion -- References -- Chapter 2 Training/Test Data Partitioning for Empirical Performance Evaluation -- 2.1. Introduction -- 2.2. Formal Problem Definition -- 2.2.1. Distance Function -- 2.2.2. Computational Complexity -- 2.3. Genetic Search Algorithm -- 2.4. A Testbed -- 2.5. Experimental Results -- 2.6. Conclusions -- References -- Chapter 3 Analyzing PCA-based Face Recognition Algorithms: Eigenvector Selection and Distance Measures -- 3.1. Introduction -- 3.2. The FERET Database -- 3.3. Distance Measures -- 3.3.1. Adding Distance Measures -- 3.3.2. Distance Measure Aggregation -- 3.3.3. Correlating Distance Metrics -- 3.3.4. When Is a Difference Significant -- 3.4. Selecting Eigenvectors -- 3.4.1. Removing the Last Eigenvectors -- 3.4.2. Removing the First Eigenvector -- 3.4.3. Eigenvalue Ordered by Like-Image Difference -- 3.4.4. Variation Associated with Different Test/Training Sets -- 3.5. Conclusion -- References -- Chapter 4 Design of a Visual System for Detecting Natural Events by the Use of an Independent Visual Estimate: A Human Fall Detector -- 4.1. Introduction -- 4.2. Approach -- 4.3. Data Collection -- 4.4. Velocity Estimation -- 4.4.1. Colour Segmentation and Velocity Estimation -- 4.4.2. IR Velocity Estimation -- 4.4.3. Velocity Correlation -- 4.4.4. Data combination -- 4.4.5. Conclusions -- 4.5. Neural Network Fall Detector -- 4.5.1. Data Preparation Network Design and Training -- 4.5.2. Testing -- 4.6. Conclusions -- References.

Chapter 5 Task-Based Evaluation of Image Filtering within a Class of Geometry-Driven-Diffusion Algorithms -- 5.1. Introduction -- 5.2. Nonlinear Geometry-Driven Diffusion Methods of Image Filtering -- 5.3. Diffusion-Like Ideal Filtering of a Noise Corrupted Piecewise Constant Image Phantom -- 5.4. Stochastic Model of the Piecewise Constant Image Phantom Corrupted by Gaussian Noise -- 5.5. Estimates of Probability Distribution Parameters for Characterization of Filtering Results -- 5.6. Implementation results -- 5.7. Conclusions -- References -- Chapter 6 A Comparative Analysis of Cross-Correlation Matching Algorithms Using a Pyramidal Resolution Approach -- 6.1. Introduction -- 6.2. Area Based Matching Algorithms -- 6.3. Cross-Correlation Algorithms -- 6.4. Pyramidal Processing Scheme -- 6.4.1. Number of Layers -- 6.4.2. Decimation Function -- 6.4.3. Matching Process -- 6.4.4. Interpolation -- 6.4.5. Disparity Maps -- 6.5. Experimental Results -- 6.5.1. Experiment Layout -- 6.5.2. Disparity Maps -- 6.5.3. Disparity Error -- 6.5.4. Computational Load -- 6.6. Conclusion -- References -- Chapter 7 Performance Evaluation of Medical Image Processing Algorithms -- 7.1. Introduction -- 7.2. Presentations -- 7.2.1. New NCI Initiatives in Computer-Aided Diagnosis -- 7.2.2. Performance Characterization of Image and Video Analysis Systems at Siemens Corporate Research -- 7.2.3. Validating Registration Algorithms: A Case Study -- 7.2.4. Performance Evaluation of Image Processing Algorithms in Medicine: A Clinical Perspective -- 7.2.5. Performance Evaluation: Points for Discussion -- 7.3. Panel Discussion -- References.
Abstract:
This book provides comprehensive coverage of methods for the empirical evaluation of computer vision techniques. The practical use of computer vision requires empirical evaluation to ensure that the overall system has a guaranteed performance. The book contains articles that cover the design of experiments for evaluation, range image segmentation, the evaluation of face recognition and diffusion methods, image matching using correlation methods, and the performance of medical image processing algorithms. Sample Chapter(s). Foreword (228 KB). Chapter 1: Introduction (505 KB). Contents: Automated Performance Evaluation of Range Image Segmentation Algorithms; Training/Test Data Partitioning for Empirical Performance Evaluation; Analyzing PCA-Based Face Recognition Algorithms: Eigenvector Selection and Distance Measures; Design of a Visual System for Detecting Natural Events by the Use of an Independent Visual Estimate: A Human Fall Detector; Task-Based Evaluation of Image Filtering Within a Class of Geometry-Driven-Diffusion Algorithms; A Comparative Analysis of Cross-Correlation Matching Algorithms Using a Pyramidal Resolution Approach; Performance Evaluation of Medical Image Processing Algorithms. Readership: Students and researchers in computer vision.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: