Cover image for Introduction to Modern Methods of Quantum Many-Body Theory and Their Applications.
Introduction to Modern Methods of Quantum Many-Body Theory and Their Applications.
Title:
Introduction to Modern Methods of Quantum Many-Body Theory and Their Applications.
Author:
Fabrocini, Adelchi.
ISBN:
9789812777072
Personal Author:
Physical Description:
1 online resource (427 pages)
Series:
Series on Advances in Quantum Many-Body Theory ; v.7

Series on Advances in Quantum Many-Body Theory
Contents:
CONTENTS -- PREFACE -- Chapter 1 DENSITY FUNCTIONAL THEORY -- 1. Introduction -- 1.1. Units and notation -- 1.2. Hartree-Fock theory -- 1.3. Homogeneous electron gas -- 1.3.1. Free electrons -- 1.3.2. Exchange energy -- 2. What is density functional theory? -- 2.1. Hohenberg-Kohn theorem -- 2.2. A simple example: the Thomas-Fermi theory -- 2.2.1. Variational equation of Thomas-Fermi theory -- 2.2.2. Thomas-Fermi atom -- 2.2.3. An example -- 3. Kohn-Sham theory -- 3.1. Local density approximation -- 3.2. Spin and the local spin density approximation -- 3.3. The generalized gradient approximation -- 4. Numerical methods for the Kohn-Sham equation -- 4.0.1. Exact exchange -- 4.0.2. 0(N) methods -- 5. Some applications and limitations of DFT -- 5.1. Two examples of condensed matter -- 5.2. Vibrations -- 5.3. NMR chemical shifts -- 6. Limitations of DFT -- 7. Time-dependent density functional theory: the equations -- 7.1. Optical properties -- 7.1.1. f-sum rule -- 7.2. Methods to solve the TDDFT equations -- 7.2.1. Linear response formula -- 7.3. Dynamic polarizability -- 7.4. Dielectric function -- 8. TDDFT: numerical aspects -- 8.1. Configuration matrix method -- 8.2. Linear response method -- 8.3. Sternheimer method -- 8.4. Real time method -- 9. Applications of TDDFT -- 9.1. Simple metal clusters -- 9.2. Carbon structures -- 9.3. Diamond -- 9.4. Other applications -- 9.5. Limitations -- References -- Chapter 2 MICROSCOPIC DESCRIPTION OF QUANTUM LIQUIDS -- 1. Introduction -- 1.1. General properties -- 2. Microscopic description -- 3. Hypernetted-chain equations -- 3.1. Results for liquid 4He -- 4. Minimization of the energy: Optimal two-body correlation functions -- 4.1. Asymptotic behavior -- 5. Low excited states -- 6. A 3He impurity in liquid 4He.

6.1. The 3He impurity as a probe in liquid 4He -- 6.2. The excitation spectrum of the 3He impurity -- 6.3. Correlated perturbative approach -- 7. Variational description of Fermi systems -- 7.1. Diagrammatic rules and Fermi hypernetted chain equations -- 7.2. Results for 3He -- 7.3. Excited states and the dynamic structure function -- 8. Summary -- 9. Acknowledgments -- References -- Chapter 3 THE COUPLED CLUSTER METHOD AND ITS APPLICATIONS -- 1. Introduction -- 2. The Coupled Cluster formalism -- 2.1. The exponential form of the wave function -- 2.2. The Configuration Interaction Method (CIM) -- 2.3. The Coupled Cluster equations -- 2.4. The reference state -- 2.5. The Bra Ground state -- 3. Approximation schemes -- 3.1. The SUB(n) or CCn approximation -- 3.2. Applications to Coulomb interacting systems -- 3.3. The HCSUB(n) approximation -- 4. Applications to light nuclei -- 4.1. The TICC2 approximation in configuration representation -- 4.2. TICC2 in coordinate representation -- 4.3. The nuclei 4He and 16O in the TICI2 approximation -- 4.4. Beyond TICI2 -- 5. Helium droplets -- 5.1. The J-TICI3 approximation -- 5.2. Ground state of 4He droplets -- 5.3. Collective states of 4He droplets -- 5.4. 3He droplets -- References -- Chapter 4 EXPERIMENTS WITH A RUBIDIUM BOSE-EINSTEIN CONDENSATE -- 1. Introduction -- 2. Micromotion -- 3. BEC in 1D optical lattice -- 4. Condensate photoionization -- 5. Conclusions and acknowledgments -- References -- Chapter 5 THEORETICAL ASPECTS OF BOSE-EINSTEIN CONDENSATION -- 1. Bosons and condensation -- 2. BEC in 4He -- 3. BEC in dilute systems -- 4. Conclusions -- 5. Acknowledgments -- References -- Chapter 6 ELEMENTARY EXCITATIONS AND DYNAMIC STRUCTURE OF QUANTUM FLUIDS -- 1. Introduction -- 2. Ground state of a quantum Bose fluid -- 2.1. Optimized ground state.

2.2. Euler equation with the Jastrow wave function -- 3. Equation of motion method -- 3.1. Linear response -- 3.2. Time-dependent correlation functions -- 3.3. Action integral -- 3.4. Least action principle -- 3.5. Many-particle densities and currents -- 3.6. One- and two-particle continuity equations -- 4. Solving the continuity equations -- 4.1. Feynman approximation -- 5. CBF-approximation -- 5.1. Convolution approximation -- 5.2. Two-particle equation -- 5.3. One-particle equation -- 5.4. The self-energy and the linear response function -- 5.4.1. Numerical evaluation of the self-energy -- 5.5. Analytic structure of the self-energy -- 5.5.1. Anomalous dispersion in liquid 4He -- 5.5.2. Absolute minimum in the spectrum -- 5.6. Dynamic structure function in the CBF-approximation -- 5.7. Summary -- 6. The full solution -- 6.1. Continuity equations -- 6.2. Continuity equations in momentum space -- 6.3. Phonon-roton spectrum -- 6.4. Sum rules -- 6.5. Results on two-particle currents -- 6.6. Precursor of the liquid-solid transition -- 7. Dynamics of a single impurity -- 7.1. Continuity equations -- 7.2. Linear response and self-energy -- 7.3. Hydrodynamic effective mass -- 8. Summary -- References -- Chapter 7 THEORY OF CORRELATED BASIS FUNCTIONS -- 1. Introduction -- 2. Basics of CBF theory -- 2.1. Motivations basic concepts and definitions -- 2.2. Finite-order correlated basis functions theory -- 3. Techniques for matrix elements -- 3.1. Definitions and notations -- 3.2. Techniques for matrix elements. I. Diagonal quantities -- 3.3. Techniques for matrix elements. II. Off-diagonal quantities -- 4. Interpretation of effective interactions -- 4.1. Quasiparticle interaction -- 4.2. Variational BCS theory -- 4.3. CBF the optimization problem and momentum-dependent correlations -- 5. Infinite order CBF theory -- 5.1. Introduction.

5.2. Correlated coupled cluster theory -- 5.3. CBF ring diagrams -- 6. Dynamics in correlated basis functions -- 6.1. Equations of motion for correlated states -- 6.2. Coherence and the Feynman theory of excitations -- 6.3. Diagrammatic reduction -- 6.4. Local approximations -- 6.5. Averaged CRPA equations -- 6.6. Response function and dynamic structure function -- References -- Chapter 8 THE MAGNETIC SUSCEPTIBILITY OF LIQUID 3He -- 1. Introduction -- 2. The susceptibility of bulk liquid 3He -- 3. Liquid 3He confined in aerogel -- 4. Two-dimensional liquid 3He -- 5. Conclusions -- 6. Acknowledgements -- References -- Chapter 9 THE HYPERSPHERICAL HARMONIC METHOD: A REVIEW AND SOME RECENT DEVELOPMENTS -- 1. Introduction -- 2. Microscopic systems -- 3. Jacobi coordinates -- 4. Hyperspherical coordinates -- 5. Hyperspherical functions -- 6. The coupled equations -- 7. The hyperspherical harmonic expansion in momentum space -- 8. Results for the A = 3 4 nuclei with the hyperspherical harmonic expansion -- 9. Modified hyperspherical harmonic expansions -- 9.1. The potential basis -- 9.2. The correlated expansion -- 9.3. The adiabatic approximation -- 9.4. The extended hyperspherical harmonic expansion -- 9.5. Application of the EHH expansion to the helium atom -- 10. Variational calculations for three- and four-nucleon scattering processes -- 10.1. N - d scattering -- 10.2. Results for the N - d scattering -- 10.3. Results for the low energy n-3H and p-3He scattering -- 11. Electro-weak reaction on few-nucleon systems -- 11.1. The p - d radiative capture -- 11.2. The hep reaction -- 12. Conclusions -- References -- Chapter 10 THE NUCLEAR MANY-BODY PROBLEM -- 1. Introduction -- 1.1. The nuclear interaction -- 1.2. Quantum simulations -- 1.3. Plan of the paper -- 2. The Hamiltonian -- 2.1. Two-body potential.

2.2. Three-body interaction -- 3. The AFDMC method -- 3.1. The auxiliary field breakup for a v6 two-body potential -- 3.2. Break-up for the three-body potential -- 3.3. The spin-orbit propagator -- 3.4. Trial wave function and path constraint -- 3.5. Tail corrections -- 3.6. The AFDMC algorithm -- 3.7. Finite size effects: The periodic box FHNC method -- 4. AFDMC applications to nucleon matter -- 4.1. Equation of state of neutron matter -- 4.2. Symmetry energy of nuclear matter -- 4.3. Spin susceptibility of neutron matter -- 5. Outlook and Conclusions -- References -- INDEX.
Abstract:
This invaluable book contains pedagogical articles on the dominant nonstochastic methods of microscopic many-body theories - the methods of density functional theory, coupled cluster theory, and correlated basis functions - in their widest sense. Other articles introduce students to applications of these methods in front-line research, such as Bose-Einstein condensates, the nuclear many-body problem, and the dynamics of quantum liquids. These keynote articles are supplemented by experimental reviews on intimately connected topics that are of current relevance. The book addresses the striking lack of pedagogical reference literature in the field that allows researchers to acquire the requisite physical insight and technical skills. It should, therefore, provide useful reference material for a broad range of theoretical physicists in condensed-matter and nuclear theory. Contents: Density Functional Theory; Microscopic Description of Quantum Liquids; The Coupled Cluster Method and Its Applications; Experiments with a Rubidium Bose-Einstein Condensate; Theoretical Aspects of Bose-Einstein Condensation; Elementary Excitations and Dynamic Structure of Quantum Fluids; Theory of Correlated Basis Functions; The Magnetic Susceptibility of Liquid 3 He; The Hyperspherical Harmonic Method: A Review and Some Recent Developments; The Nuclear Many-Body Problem. Readership: Graduate students and researchers in condensed matter physics.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: