
Codes Over Rings.
Title:
Codes Over Rings.
Author:
Solé, Patrick.
ISBN:
9789812837691
Personal Author:
Physical Description:
1 online resource (201 pages)
Series:
Series on Coding Theory and Cryptology ; v.6
Series on Coding Theory and Cryptology
Contents:
Contents -- Preface -- References -- Partial Correlations of Sequences and Their Applications S. Bozta and P. Udaya -- 1. Introduction and Background -- 1.1. Outline of Paper -- 2. Sequences and Correlations -- 3. Rings, Trace Functions and Sequences -- 3.1. Galois Ring Preliminaries -- 3.2. Sequence Families- A, Band C -- 4. The Partial Correlation and Its First Moment -- 5. The Second Moment of the Partial Correlation Function -- 6. Conclusions and Discussion -- Acknowledgements -- References -- On the Structure of Cyclic and Negacyclic Codes over Finite Chain Rings H. Q. Dinh, S. R. Lopez-Per-mouth and S. Szabo -- 1. Introduction -- 2. Chain Rings and Galois Rings -- 3. Alternative Metrics for Codes over Finite Rings -- 4. Constacyclic Codes over Arbitrary Commutative Finite Rings -- 5. Simple-Root Cyclic and Negacyclic Codes over Finite Chain Rings -- 6. Repeated-Root Cyclic and Negacyclic Codes over Finite Chain Rings -- 7. Closing Remarks and A Few Generalizations -- References -- Linear Codes over Finite Chain Rings and Projective Hjelmslev Geometries T. Honold and 1. Landjev -- 1. Introduction -- 2. Modules over Finite Chain Rings -- 2.1. Finite Chain Rings -- 2.2. Structure of Finite Modules -- 2.3. Free Modules -- 2.4. Counting Formulas -- 3. Linear Codes over Finite Chain Rings -- 3.1. Basic properties -- 3.2. Code Spectra and Isomorphisms -- 3.3. Mac Williams Identities -- 4. Projective and Affine Hjelmslev Spaces -- 4.1. Axiomatic Definition -- 4.2. Coordinate Hjelmslev Geometries -- 4.3. Multisets of Points in PHG(R~) -- 5. Linear Codes and Geometry -- 5.1. Equivalence of Multisets of Points and Linear Codes -- 5.2. Some Classes of Codes Defined Geometrically -- 5.3. Generalized Gray Maps -- 5.4. Linearly Representable Codes -- 5.5. Homogeneous Weights and Strongly Regular Graphs -- 6. Arcs in Projective Hjelmslev Planes.
6.1. A General Upper Bound for the Size of an Arc -- 6.2. Constructions for Arcs -- 6.3. (k,2)-Arcs -- 6.4. Dual Constructions -- 6.5. Constructions Using Automorphisms -- 6.6. Tables for Arcs in Geometries over Small Chain Rings -- 7. Blocking Sets in Projective Hjelmslev Planes -- 7.1. General Results -- 7.2. Redei Type Blocking Sets -- Acknowledgements -- Bibliography -- Foundations of Linear Codes Defined over Finite Modules: The Extension Theorem and the MacWilliams Identities 1. A. Wood -- 1. Introduction -- 2. Characters -- 2.1. Basic results -- 2.2. Additive form of characters -- 2.3. Character modules -- 3. Finite rings -- 3.1. Basic definitions -- 3.2. Structure of finite rings -- 3.3. Duality -- 4. Mobius functions of posets -- 4.1. Basic definitions -- 4.2. Examples -- 5. Linear codes over modules -- sufficient conditions for the extension theorem -- 5.1. Basic definitions -- 5.2. The character module as alphabet: the case of Hamming weight -- 5.3. Sufficient conditions: the case of Hamming weight -- 5.4. Sufficient conditions: the case of rings -- 5.5. Semi-linear transformations -- 6. Necessary conditions for the extension theorem -- 6.1. Statement of results -- 6.2. Proof of Theorem 6.3 -- 6.3. The strategy of Dinh and Lopez-Permouth and proofs of necessary conditions -- 7. Parameterized codes -- 7.1. Parameterized codes -- 7.2. Multiplicity functions -- 7.3. The weight mapping -- 7.4. Completion over IQ: virtual codes -- 7.5. Matrix representation for W -- 7.6. Field case -- 7.7. Matrix module case -- 8. Symmetrized weight compositions -- 8.1. Definitions -- 8.2. Averaged characters -- 8.3. Extension property for Frobenius bimodules -- 9. General weight functions -- 9.1. Homogeneous weight -- 9.2. A sufficient condition -- 9.3. Chain rings -- 9.4. Matrix rings -- 10. The MacWilliams identities: A model theorem.
10.1. Classical case of finite fields -- 10.2. Plan of attack -- 11. Mac Williams identities for additive codes -- 11.1. Fourier transform and Poisson summation formula -- 11.2. Additive codes -- 11.3. Biadditive forms -- 12. Duality for modules -- 12.1. Linear codes -- 12.2. Bilinear forms -- 12.3. The double annihilator property -- 12.4. The size condition -- 12.5. Generating characters -- 12.6. A degenerate case -- 13. Other weight enumerators -- 13.1. Full weight enumerators -- 13.2. Complete weight enumemtors -- 13.3. A degenerate case -- Acknowledgments -- References.
Abstract:
This is the proceedings volume of the International Centre for Pure and Applied Mathematics Summer School course held in Ankara, Turkey, in August 2008. Contributors include Boztaş, Udaya, Dinh, Ling, López-Permouth, Szabo, Honold, Landjev and Wood. The aim is to present a survey in fundamental areas and highlight some recent results. Sample Chapter(s). Chapter 1: Partial Correlations of Sequences and Their Applications (581 KB). Contents: Partial Correlations of Sequences and Their Applications (S Boztaş & P Udayai); On the Structure of Cyclic and Negacyclic Codes Over Finite Chain Rings (H Q Dinh et al.); Linear Codes Over Finite Chain Rings and Projective Hjelmslev Geometries (T Honold & I Landjev); Foundations of Linear Codes Defined Over Finite Modules: The Extension Theorem and the MacWilliams Identities (J A Wood). Readership: Researchers in coding theory, ring theorists interested in applications.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View