
Algebraic Invariants of Links.
Title:
Algebraic Invariants of Links.
Author:
Hillman, Jonathan.
ISBN:
9789812776648
Personal Author:
Physical Description:
1 online resource (321 pages)
Series:
Series on Knots and Everything ; v.32
Series on Knots and Everything
Contents:
Contents -- Preface -- Part 1. Abelian Covers -- Chapter 1. Links -- 1.1. Basic notions -- 1.2. The link group -- 1.3. Homology boundary links -- 1.4. Z/2Z-boundary links -- 1.5. Isotopy concordance and /-equivalence -- 1.6. Link homotopy and surgery -- 1.7. Ribbon links -- 1.8. Link-symmetric groups -- 1.9. Link composition -- Chapter 2. Homology and Duality in Covers -- 2.1. Homology and cohomology with local coefficients -- 2.2. Covers of link exteriors -- 2.3. Poincare duality and the Blanchfield pairings -- 2.4. The total linking number cover -- 2.5. The maximal abelian cover -- 2.6. Concordance -- 2.7. Additivity -- 2.8. The Seifert approach for boundary 1-links -- 2.9. Signatures -- Chapter 3. Determinantal Invariants -- 3.1. Elementary ideals -- 3.2. The Elementary Divisor Theorem -- 3.3. Extensions -- 3.4. Reidemeister-Franz torsion -- 3.5. Steinitz-Fox-Smythe invariants -- 3.6. 1- and 2-dimensional rings -- 3.7. Bilinear pairings -- Chapter 4. The Maximal Abelian Cover -- 4.1. Metabelian groups and the Crowell sequence -- 4.2. Free metabelian groups -- 4.3. Link module sequences -- 4.4. Localization of link module sequences -- 4.5. Chen groups -- 4.6. Applications to links -- 4.7. Chen groups nullity and longitudes -- 4.8. I-equivalence -- 4.9. The sign-determined Alexander polynomial -- 4.10. Higher dimensional links -- Chapter 5. Sublinks and Other Abelian Covers -- 5.1. The Torres conditions -- 5.2. Torsion again -- 5.3. Partial derivatives -- 5.4. The total linking number cover -- 5.5. Murasugi nullity -- 5.6. Fibred links -- 5.7. Finite abelian covers -- 5.8. Cyclic branched covers -- 5.9. Families of coverings -- 5.10. Twisted Alexander invariants -- Part 2. Applications: Special Cases and Symmetries -- Chapter 6. Knot Modules -- 6.1. Knot modules -- 6.2. A Dedekind criterion -- 6.3. Cyclic modules.
6.4. Recovering the module from the polynomial -- 6.5. Homogeneity and realizing TT-primary sequences -- 6.6. The Blanchfield pairing -- 6.7. Branched covers -- Chapter 7. Links with Two Components -- 7.1. Bailey's Theorem -- 7.2. Consequences of Bailey's Theorem -- 7.3. The Blanchfield pairing -- 7.4. Links with Alexander polynomial 0 -- 7.5. 2-Component Z/2Z-boundary links -- 7.6. Topological concordance and F-isotopy -- 7.7. Some examples -- Chapter 8. Symmetries -- 8.1. Basic notions -- 8.2. Symmetries of knot types -- 8.3. Group actions on links -- 8.4. Semifree periods -- 8.5. Links with infinitely many semifree periods -- 8.6. Knots with free periods -- 8.7. Strong symmetries -- 8.8. Equivariant concordance -- Part 3. Free Covers Nilpotent Quotients and Completion -- Chapter 9. Free Covers -- 9.1. Free group rings -- 9.2. Z[F(u)]-Modules -- 9.3. The Sato property -- 9.4. The Farber derivations -- 9.5. The maximal free cover and duality -- 9.6. The classical case -- 9.7. The case n = 2 -- 9.8. An unlinking theorem -- 9.9. Patterns and calibrations -- 9.10. Concordance -- Chapter 10. Nilpotent Quotients -- 10.1. Massey products -- 10.2. Products the Dwyer filtration and gropes -- 10.3. Mod-p analogues -- 10.4. The graded Lie algebra of a group -- 10.5. DGAs and minimal models -- 10.6. Milnor invariants -- 10.7. Link homotopy and the Milnor group -- 10.8. Variants of the Milnor invariants -- 10.9. Solvable quotients and covering spaces -- Chapter11. Algebraic Closure -- 11.1. Homological localization -- 11.2. The nilpotent completion of a group -- 11.3. The algebraic closure of a group -- 11.4. Complements on F(u) -- 11.5. ther notions of closure -- 11.6. Orr invariants and cSHB-links -- Chapter12. Disc Links -- 12.1. Disc links and string links -- 12.2. Longitudes.
12.3. Concordance and the Artin representation -- 12.4. Homotopy -- 12.5. Milnor invariants again -- 12.6. The Gassner representation -- 12.7. High dimensions -- Bibliography -- Index.
Abstract:
This book is intended as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes features of the multicomponent case not normally considered by knot theorists, such as longitudes, the homological complexity of many-variable Laurent polynomial rings, free coverings of homology boundary links, the fact that links are not usually boundary links, the lower central series as a source of invariants, nilpotent completion and algebraic closure of the link group, and disc links. Invariants of the types considered here play an essential role in many applications of knot theory to other areas of topology. Contents: Abelian Covers: Links; Homology and Duality in Covers; Determinantal Invariants; The Maximal Abelian Cover; Sublinks and Other Abelian Covers; Twisted Polynomial Invariants; Applications: Special Cases and Symmetries: Knot Modules; Links with Two Components; Symmetries; Singularities of Plane Curves; Free Covers, Nilpotent Quotients and Completion: Free Covers; Nilpotent Quotients; Algebraic Closure; Disc Links. Readership: Graduate students and academics in geometry and topology.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View