
Perspectives in Mathematical Science I : Probability and Statistics.
Title:
Perspectives in Mathematical Science I : Probability and Statistics.
Author:
Sastry, N. S. Narasimha.
ISBN:
9789814273633
Personal Author:
Physical Description:
1 online resource (283 pages)
Series:
Statistical Science and Interdisciplinary Research ; v.7
Statistical Science and Interdisciplinary Research
Contents:
Contents -- Foreword -- Preface -- 1. Entropy and Martingale K. B. Athreya and M. G. Nadkarni -- 1.1. Introduction -- 1.2. Relative Entropy and Gibbs-Boltzmann Measures -- 1.2.1. Entropy Maximization Results -- 1.2.2. Weak Convergence of Gibbs-Boltzmann Distribution -- 1.2.3. Relative Entropy and Conditioning -- 1.3. Measure Free Martingales, Weak Martingales, Martingales -- 1.3.1. Finite Range Case -- 1.3.2. The General Case -- 1.4. Equivalent Martingale Measures -- References -- 2. Marginal Quantiles: Asymptotics for Functions of Order Statistics G. J. Babu -- 2.1. Introduction -- 2.1.1. Streaming Data -- 2.2. Marginal Quantiles -- 2.2.1. Joint Distribution of Marginal Quantiles -- 2.2.2. Weak Convergence of Quantile Process -- 2.3. Regression under Lost Association -- 2.4. Mean of Functions of Order Statistics -- 2.5. Examples -- Acknowledgment -- References -- 3. Statistics on Manifolds with Applications to Shape Spaces R. Bhattacharya and A. Bhattacharya -- 3.1. Introduction -- 3.2. Geometry of Shape Manifolds -- 3.2.1. The Real Projective Space RPd -- 3.2.2. Kendall's (Direct Similarity) Shape Spaces Σk -- 3.2.3. Reflection (Similarity) Shape Spaces RSk m -- 3.2.4. Affine Shape Spaces ASk m -- 3.2.5. Projective Shape Spaces PΣk m -- 3.3. Fréchet Means on Metric Spaces -- 3.4. Extrinsic Means on Manifolds -- 3.4.1. Asymptotic Distribution of the Extrinsic Sample Mean -- 3.5. Intrinsic Means on Manifolds -- 3.6. Applications -- 3.6.1. Sd -- 3.6.1.1. Extrinsic Mean on Sd -- 3.6.1.2. Intrinsic Mean on Sd -- 3.6.2. RPd -- 3.6.2.1. Extrinsic Mean on RPd -- 3.6.2.2. Intrinsic Mean on RPd -- 3.6.3. Σk m -- 3.6.4. Σk2 -- 3.6.4.1. Extrinsic Mean on Σk2 -- 3.6.4.2. Intrinsic Mean on Σk2 -- 3.6.5. RΣk m -- 3.6.6. AΣk m -- 3.6.7. P0Σk m -- 3.7. Examples -- 3.7.1. Example 1: Gorilla Skulls -- 3.7.2. Example 2: Schizophrenic Children.
3.7.3. Example 3: Glaucoma Detection -- Acknowledgment -- References -- 4. Reinforcement Learning - A Bridge Between Numerical Methods and Monte Carlo V. S. Borkar -- 4.1. Introduction -- 4.2. Stochastic Approximation -- 4.3. Estimating Stationary Averages -- 4.4. Function Approximation -- 4.5. Estimating Stationary Distribution -- 4.6. Acceleration Techniques -- 4.7. Future Directions -- References -- 5. Factors, Roots and Embeddings of Measures on Lie Groups S. G. Dani -- 5.1. Introduction -- 5.2. Some Basic Properties of Factors and Roots -- 5.3. Factor Sets -- 5.4. Compactness -- 5.5. Roots -- 5.6. One-Parameter Semigroups -- References -- 6. Higher Criticism in the Context of Unknown Distribution, Non-independence and Classi.cation A. Delaigle and P. Hall -- 6.1. Introduction -- 6.2. Methodology -- 6.2.1. Higher-criticism signal detection -- 6.2.2. Generalising and adapting to an unknown null distribution -- 6.2.3. Classifiers based on higher criticism -- 6.3. Theoretical Properties -- 6.3.1. Effectiveness of approximation to hcW by hcW -- 6.3.2. Removing the assumption of independence -- 6.3.3. Delineating good performance -- 6.4. Further Results -- 6.4.1. Alternative constructions of hcW and hcW -- 6.4.2. Advantages of incorporating the threshold -- 6.5. Numerical Properties in the Case of Classification -- 6.6. Technical Arguments -- 6.6.1. Proof of Theorem 6.1 -- 6.6.2. Proof of Theorem 6.2 -- References -- Appendix -- A.1. Description of the Cross-Validation Procedure -- A.2. Proof of Theorem 6.3 -- 7. Bayesian Nonparametric Approach to Multiple Testing S. Ghosal and A. Roy -- 7.1. Bayesian Nonparametric Inference -- 7.2. Multiple Hypothesis Testing -- 7.3. Bayesian Mixture Models for p-Values -- 7.3.1. Independent case: Beta mixture model for p-values -- 7.3.2. Dependent case: Skew-normal mixture model for probit p-values.
7.4. Areas of Application -- References -- 8. Bayesian Inference on Finite Mixtures of Distributions K. Lee, J.-M. Marin, K. Mengersen and C. Robert -- 8.1. Introduction -- 8.2. Finite Mixtures -- 8.2.1. Definition -- 8.2.2. Missing data -- 8.2.3. The necessary but costly expansion of the likelihood -- 8.2.4. Exact posterior computation -- 8.3. Mixture Inference -- 8.3.1. Nonidentifiability, hence label switching -- 8.3.2. Restrictions on priors -- 8.4. Inference for Mixtures with a Known Number of Components -- 8.4.1. Reordering -- 8.4.2. Data augmentation and Gibbs sampling approximations -- 8.4.3. Metropolis-Hastings approximations -- 8.5. Inference for Mixture Models with an Unknown Number of Components -- Acknowledgments -- References -- 9. Markov Processes Generated by Random Iterates of Monotone Maps: Theory and Applications M. Majumdar -- 9.1. Introduction -- 9.2. Random Dynamical Systems -- 9.3. Evolution -- 9.4. Splitting -- 9.4.1. Splitting and Monotone Maps -- 9.4.2. An Extension and Some Applications -- 9.4.3. Extinction and Growth -- 9.5. Invariant Distributions: Computation and Estimation -- 9.5.1. An Estimation Problem -- 9.6. Growth Under Uncertainty -- 9.6.1. A Stochastic Stability Theorem in a Descriptive Model -- 9.6.2. One Sector Log-Cobb-Douglas Optimal Growth -- 9.6.2.1. The Support of the Invariant Distribution -- Acknowledgments -- References -- 10. An Invitation to Quantum Information Theory K. R. Parthasarathy -- 10.1. Introduction -- 10.2. Elements of Finite Dimensional Quantum Probability -- 10.3. Quantum Error-Correcting Codes -- 10.4. Testing Quantum Hypotheses -- References -- 11. Scaling Limits S. R. S. Varadhan -- 11.1. Introduction -- 11.2. Non-Interacting Case -- 11.3. Simple Exclusion Processes -- 11.4. Large Deviations -- References -- Author Index -- Subject Index -- Contents of Part II.
Abstract:
This book presents a collection of invited articles by distinguished probabilists and statisticians on the occasion of the Platinum Jubilee Celebrations of the Indian Statistical Institute - a notable institute with significant achievement in research areas of statistics, probability and mathematics - in 2007. With a wide coverage of topics in probability and statistics, the articles provide a current perspective of different areas of research, emphasizing the major challenging issues. The book also proves its reference and utility value for practitioners as the articles in Statistics contain applications of the methodology that will be of use to practitioners. To professional statisticians and mathematicians, this is a unique volume for its illuminating perspectives on several important aspects of probability and statistics. Sample Chapter(s). Foreword (80 KB). Chapter 1: Entropy and Martingale (364 KB). Contents: Entropy and Martingale (K B Athreya & M G Nadkarni); Marginal Quantiles: Asymptotics for Functions of Order Statistics (G J Babu); Statistics on Manifolds with Applications to Shape Spaces (R Bhattacharya & A Bhattacharya); Reinforcement Learning - A Bridge Between Numerical Methods and Monte Carlo (V S Borkar); Factors, Roots and Embeddings of Measures on Lie Groups (S G Dani); Higher Criticism in the Context of Unknown Distribution, Non-Independence and Classification (A Delaigle & P Hall); Bayesian Nonparametric Approach to Multiple Testing (S Ghosal & A Roy); Bayesian Inference on Mixtures of Distributions (K Lee et al.); Markov Processes Generated by Random Iterates of Monotone Maps: Theory and Applications (M Majumdar); An Invitation to Quantum Information Theory (K R Parthasarathy); Scaling Limits (S R S Varadhan). Readership: Professional statisticians and mathematicians.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View