Cover image for Granular and Complex Materials.
Granular and Complex Materials.
Title:
Granular and Complex Materials.
Author:
Aste, T.
ISBN:
9789812771995
Personal Author:
Physical Description:
1 online resource (268 pages)
Series:
World Scientific Lecture Notes in Complex Systems ; v.8

World Scientific Lecture Notes in Complex Systems
Contents:
Contents -- Preface -- Chapter 1 Foam as granular matter D. Weaire, V. Langlois, M. Saadatfar and S. Hutzler -- 1. Introduction -- 1.1. History of foam research -- 1.2. Space and time scales -- 1.3. Key physical parameters -- 1.4. Wet and dry foams -- 1.5. Emulsions -- 2. Static properties -- 2.1. Structure -- 2.2. Crystallization -- 2.3. Drainage -- 3. Dynamic properties -- 3.1. Rheology -- 3.2. Shear banding -- 3.3. Dilatancy -- 4. Bubbles as soft grains ? -- 5. Seeing inside foams (Computed Tomography) -- Granular materials -- Cellular Solids -- Aqueous foams -- 6. Conclusions -- 7. Acknowledgements -- References -- Chapter 2 Delaunay simplex analysis of the structure of equal sized spheres A.V. Anikeenko, N.N. Medvedev, T. Di Matteo, G.W. Delaney and T. Aste -- 1. Introduction -- 2. Models -- 3. Results -- 4. Conclusion -- Acknowledgements -- References -- Chapter 3 On entropic characterization of granular materials R. Blumenfeld -- 1. Introduction: the entropic formalism -- 2. Calculations of volume-based structural properties -- 3. Calculations of other structural properties -- 4. The entropic formalism and mechanical stresses -- References -- Chapter 4 Mathematical modeling of granular flow-slides I. Vardoulakis and S. Alevizos -- 1. Introduction -- 2. The continuum assumption -- 3. The motion -- 4. The material time derivative -- 5. Mass storage in open channel flow -- 6. St. Venant's "shallow water theory" -- 7. "Shallow-water" model of granular flows -- 8. Mass conservation in granular flows -- 9. The dynamic equation of granular flow -- 10. Steady granular flows -- 11. The Forterre-Pouliquen scaling -- 12. An erosion-speed model -- 13. The dynamic system -- 14. The long wave-length linear stability limit -- 15. Mathematical modeling of granular flow-slides: Some open questions -- References.

Chapter 5 The mechanics of brittle granular materials I. Einav -- 1. Introduction -- 2. Modelling evolving grading: the mathematical approach -- 3. Modelling evolving grading: the physical approach -- 4. Surface energy, fractional energy & self organisation -- 5. Fracture propagation criterion -- 6. Conclusions -- References -- Chapter 6 Stranger than friction: force chain buckling and its implications for constitutive modelling A. Tordesillas -- 1. Introduction -- 2. The thermomicromechanical approach -- (a) Dissipation on the micro or contact scale -- (b) Dissipation on the mesoscale -- 3. Evolution of dissipative structures -- 4. Force chain buckling and nonaffine motion -- 5. Conclusions -- Acknowledgments -- References -- Chapter 7 Investigations of size effects in granular bodies during plane strain compression J. Tejchman and J. Górski -- 1. Introduction -- 2. Micro-polar hypoplastic model -- 3. 2D random field analysis using Latin hypercube sampling -- 4. FE-input data -- 4.1. Deterministic calculations -- 4.2. Statistical calculations (Latin hypercube sampling) -- 5. FE-results -- 5.1. Deterministic size effect -- 5.2. Statistical size effect -- 5.2.1. Medium sand specimen (40 ×140 mm2) -- 5.2.2. Large sand specimen (320 ×1120 mm2) -- 6. Conclusions -- References -- Chapter 8 Granular flows: fundamentals and applications P.W. Cleary -- 1. Introduction -- 2. Discrete Element Method -- 3. Importance of particle shape -- Vibrating plate -- Extraction of a post -- Angle of repose and failure -- 4. Granular thermodynamics - a simple demonstration -- Early behaviour: gas + solid -- "Melting" the solid microstructure above -- Microstructure all disrupted: uniform liquid -- Stopping process: granular "solidification" -- 5. Industrial applications -- Separation -- Mixing -- Storage -- Transport and transfer -- Metering -- Comminution -- Excavation.

6. Geophysical flows: landslide -- 7. Conclusions -- References -- Chapter 9 Fine tuning DEM simulations to perform virtual experiments with three-dimensional granular packings G.W. Delaney, S. Inagaki and T. Aste -- 1. Introduction -- 2. Theoretical model -- 3. Setting parameter values -- 4. Relaxation -- 5. Number of neighbours -- 6. Radial distribution function -- 7. Conclusions and outlook -- Acknowledgements -- A.1. Numerical implementation -- A.1.1. Determining sphere overlaps and relative velocities -- A.1.2. Determining the new forces -- A.1.3. Integration -- A.1.4. Cell list -- References -- Chapter 10 Fluctuations in granular materials R.P. Behringer -- 1. Introduction -- 2. Experiments -- 3. Conclusions -- References -- Chapter 11 Statistical mechanics of dense granular media M. Pica Ciamarra, A. de Candia, A. Fierro, M. Tarzia, A. Coniglio and M. Nicodemi -- 1. Introduction -- 2. Statistical Mechanics of dense granular media -- 3. Hard sphere schematic models for granular media -- 3.1. Stationary states and time averages -- 3.2. Ensemble averages -- 3.3. The properties of the compaction "tap" dynamics -- 3.4. Hard sphere binary mixtures under gravity -- 4. Molecular Dynamics simulations of a "spring-dashpot"-like model -- 5. A mean field theory of the phase diagram of granular media -- 5.1. A mean field theory of segregation -- 6. Conclusions -- References -- Chapter 12 Compaction of granular systems P. Richard, F. Lominé, P. Ribière, D. Bideau and R. Delannay -- 1. Introduction -- 2. Experimental setup -- 3. Packing fraction relaxation laws -- 4. Order apparition in glass packings undergoing compaction -- 5. Conclusions -- References.
Abstract:
The science of complex materials continues to engage researchers from a vast range of disciplines, including physics, mathematics, computational science, and virtually all domains of engineering. This volume presents a unique multidisciplinary panorama of the current research in complex materials. The contributions explore an array of problems reflecting recent developments in four main areas: characterization and modeling of disordered packings, micromechanics and continuum theory; discrete element method; statistical mechanics. The common theme is the quest to unravel the connection between the microscopic and macroscopic properties of complex materials. Sample Chapter(s). Chapter 1: Foam as granular matter (2,433 KB). Contents: Foam as Granular Matter (D Weaire et al.); Delaunay Simplex Analysis of the Structure of Equal Sized Spheres (A V Anikeenko et al.); On Entropic Characterization of Granular Materials (R Blumenfeld); Mathematical Modeling of Granular Flow-Slides (I Vardoulakis & S Alevizos); The Mechanics of Brittle Granular Materials (I Einav); Stranger than Friction: Force Chain Buckling and Its Implications for Constitutive Modelling (A Tordesillas); Investigations of Size Effects in Granular Bodies During Plane Strain Compression (J Tejchman & J Górski); Granular Flows: Fundamentals and Applications (P W Cleary); Fine Tuning DEM Simulations to Perform Virtual Experiments with Three-Dimensional Granular Packings (G W Delaney et al.); Fluctuations in Granular Materials (R P Behringer); Statistical Mechanics of Dense Granular Media (M Pica Ciamarra et al.); Compaction of Granular Systems (P Richard et al.). Readership: Physicists, material scientists, soil engineers and applied mathematicians.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: