
Evolutionary Robotics : From Algorithms to Implementations.
Title:
Evolutionary Robotics : From Algorithms to Implementations.
Author:
Wang, Lingfeng.
ISBN:
9789812773142
Personal Author:
Physical Description:
1 online resource (267 pages)
Series:
World Scientific Series in Robotics and Intelligent Systems ; v.28
World Scientific Series in Robotics and Intelligent Systems
Contents:
Contents -- Preface -- 1. Artificial Evolution Based Autonomous Robot Navigation -- 1.1 Introduction -- 1.2 Evolutionary Robotics -- 1.3 Adaptive Autonomous Robot Navigation -- 1.4 Artificial Evolution in Robot Navigation -- 1.4.1 Neural Networks -- 1.4.2 Evolutionary Algorithms -- 1.4.3 Fuzzy Logic -- 1.4.4 Other Methods -- 1.5 Open Issues and Future Prospects -- 1.5.1 SAGA -- 1.5.2 Combination of Evolution and Learning -- 1.5.3 Inherent Fault Tolerance -- 1.5.4 Hardware Evolution -- 1.5.5 On-Line Evolution -- 1.5.6 Ubiquitous and Collective Robots -- 1.6 Summary -- Bibliography -- 2. Evolvable Hardware in Evolutionary Robotics -- 2.1 Introduction -- 2.2 Evolvable Hardware -- 2.2.1 Basic Concept of EHW -- 2.2.2 Classification of EHW -- 2.2.2.1 Artificial evolution and hardware device -- 2.2.2.2 Evolution process -- 2.2.2.3 Adaptation methods -- 2.2.2.4 Application areas -- 2.2.3 Related Works -- 2.3 Evolutionary Robotics -- 2.4 Evolvable Hardware in Evolutionary Robotics -- 2.5 Promises and Challenges -- 2.5.1 Promises -- 2.5.2 Challenges -- 2.6 Summary -- Bibliography -- 3. FPGA-Based Autonomous Robot Navigation via Intrinsic Evolution -- 3.1 Introduction -- 3.2 Classifying Evolvable Hardware -- 3.2.1 Evolutionary Algorithm -- 3.2.2 Evaluation Implementation -- 3.2.3 Genotype Representation -- 3.3 Advantages of Evolvable Hardware -- 3.3.1 Novel Hardware Designs -- 3.3.2 Low Cost -- 3.3.3 Speed of Execution -- 3.3.4 Economy of Resources -- 3.4 EHW-Based Robotic Controller Design -- 3.4.1 Evolvable Hardware -- 3.4.2 Function Unit -- 3.4.3 EHW-Based Robotic Controller Design -- 3.4.3.1 Boolean function controller -- 3.4.3.2 Chromosome representation -- 3.4.3.3 Evolution and adaptation methodology -- 3.4.3.4 Robot navigation tasks -- 3.5 Hardware and Development Platform -- 3.5.1 Sensor Information -- 3.5.2 FPGA Turret.
3.5.2.1 Description -- 3.5.2.2 Architecture -- 3.5.2.3 Configuration bits -- 3.5.3 Hardware Configuration -- 3.5.4 Development Platform -- 3.6 Implementation Of EHW-Based Robot Navigation -- 3.6.1 Preliminary Investigation -- 3.6.2 Light Source Following Task -- 3.6.2.1 Software structure of light following task -- 3.6.2.2 Program settings of light following task -- 3.6.2.3 Implementation of light source following task -- 3.6.3 Obstacle Avoidance using Robot with a Traction Fault -- 3.6.3.1 Software structure of anti-collision task -- 3.6.3.2 Implementation of obstacle avoidance task -- 3.7 Summary -- Bibliography -- 4. Intelligent Sensor Fusion and Learning for Autonomous Robot Navigation -- 4.1 Introduction -- 4.2 Development Platform and Controller Architecture -- 4.2.1 The Khepera Robot and Webots Software -- 4.2.2 Hybrid Architecture of the Controller -- 4.2.3 Function Modules on Khepera Robot -- 4.3 Multi-Stage Fuzzy Logic (MSFL) Sensor Fusion System -- 4.3.1 Feature-Based Object Recognition -- 4.3.2 MSFL Inference System -- 4.4 Grid Map Oriented Reinforcement Path Learning (GMRPL) -- 4.4.1 The World Model -- 4.4.2 GMRPL -- 4.5 Real-Time Implementation -- 4.6 Summary -- Bibliography -- 5. Task-Oriented Developmental Learning for Humanoid Robots -- 5.1 Introduction -- 5.2 Task-Oriented Developmental Learning System -- 5.2.1 Task Representation -- 5.2.2 The AA-Learning -- 5.2.3 Task Partition -- 5.3 Self-Organized Knowledgebase -- 5.3.1 PHDR Algorithm -- 5.3.2 Classification Tree and HDR -- 5.3.3 PHDR -- 5.3.4 Amnesic Average -- 5.4 A Prototype TODL System -- 5.4.1 Robot Agent -- 5.4.1.1 Khepera robot -- 5.4.1.2 Interface -- 5.4.2 TODL Mapping Engine -- 5.4.3 Knowledge Database -- 5.4.4 Sample Task -- 5.4.4.1 Goods distribution problem -- 5.4.4.2 Objects identification.
5.4.4.3 PHDR representation of the sample task -- 5.5 Discussions -- 5.6 Summary -- Bibliography -- 6. Bipedal Walking Through Reinforcement Learning -- 6.1 Introduction -- 6.2 The Bipedal Systems -- 6.3 Control Architecture -- 6.4 Key Implementation Tools -- 6.4.1 Virtual Model Control -- 6.4.2 Q-Learning -- 6.4.3 Q-Learning Algorithm Using Function Approximator for Q-Factors -- 6.5 Implementations -- 6.5.1 Virtual Model Control Implementation -- 6.5.2 Reinforcement Learning to Learn Key Swing Leg's Parameter -- 6.5.2.1 State variables -- 6.5.2.2 Reward function and reinforcement learning algorithm -- 6.6 Simulation Studies and Discussion -- 6.6.1 Effect of Local Speed Control on Learning Rate -- 6.6.2 Generality of Proposed Algorithm -- 6.7 Summary -- Bibliography -- 7. Swing Time Generation for Bipedal Walking Control Using GA tuned Fuzzy Logic Controller -- 7.1 Introduction -- 7.2 Fuzzy Logic Control and Genetic Algorithm -- 7.2.1 Fuzzy Logic Control (FLC) -- 7.2.2 Genetic Algorithms (GAs) -- 7.2.3 GA Tuned FLC -- 7.3 Linear Inverted Pendulum Model -- 7.4 Proposed Bipedal Walking Control Architecture -- 7.4.1 Bipedal Walking Algorithm -- 7.4.2 Intuitions of Bipedal Walking Control from Linear Inverted Pendulum Model -- 7.4.3 Fuzzy Logic Controller (FLC) Structure -- 7.4.4 Genetic Algorithm Implementation -- 7.4.4.1 Coding the information -- 7.4.4.2 Evaluation -- 7.4.4.3 Evolutionary operators -- 7.5 Simulation Result -- 7.6 Summary -- Bibliography -- 8. Bipedal Walking: Stance Ankle Behavior Optimization Using Genetic Algorithm -- 8.1 Introduction -- 8.2 Virtual Model Control -- 8.3 Genetic Algorithm (GA) -- 8.3.1 GA's Operations -- 8.3.2 GA's Parameters -- 8.3.3 Fitness Function -- 8.4 Simulation Results and Discussion -- 8.4.1 Convergence to Optimal Solution.
8.4.2 A Comparison with Solution Produced by Enumerative Method of Optimization -- 8.4.3 The Effects of GA's Parameters -- 8.5 Summary -- Bibliography -- 9. Concluding Statements -- 9.1 Summary -- 9.2 Future Research Emphases -- 9.2.1 On-Line Evolution -- 9.2.2 Inherent Fault Tolerance -- 9.2.3 Swarm Robotics -- Index.
Abstract:
This invaluable book comprehensively describes evolutionary robotics and computational intelligence, and how different computational intelligence techniques are applied to robotic system design. It embraces the most widely used evolutionary approaches with their merits and drawbacks, presents some related experiments for robotic behavior evolution and the results achieved, and shows promising future research directions. Clarity of explanation is emphasized such that a modest knowledge of basic evolutionary computation, digital circuits and engineering design will suffice for a thorough understanding of the material. The book is ideally suited to computer scientists, practitioners and researchers keen on computational intelligence techniques, especially the evolutionary algorithms in autonomous robotics at both the hardware and software levels. Sample Chapter(s). Chapter 1: Artificial Evolution Based Autonomous Robot Navigation (184 KB). Contents: Artificial Evolution Based Autonomous Robot Navigation; Evolvable Hardware in Evolutionary Robotics; FPGA-Based Autonomous Robot Navigation via Intrinsic Evolution; Intelligent Sensor Fusion and Learning for Autonomous Robot Navigation; Task-Oriented Developmental Learning for Humanoid Robots; Bipedal Walking Through Reinforcement Learning; Swing Time Generation for Bipedal Walking Control Using GA Tuned Fuzzy Logic Controller; Bipedal Walking: Stance Ankle Behavior Optimization Using Genetic Algorithm. Readership: Researchers in evolutionary robotics, and graduate and advanced undergraduate students in computational intelligence.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View