Cover image for Applied Artificial Intelligence : Proceedings of the 7th International FLINS Conference.
Applied Artificial Intelligence : Proceedings of the 7th International FLINS Conference.
Title:
Applied Artificial Intelligence : Proceedings of the 7th International FLINS Conference.
Author:
Da Ruan,.
ISBN:
9789812774118
Personal Author:
Physical Description:
1 online resource (1020 pages)
Contents:
CONTENTS -- Knowledge Discovery for Customer Classification on the Principle of Maximum Profit C. Zeng, YXu, and W Xie -- Foreword D. Ruan -- Invited Lectures -- Computation with Information Described in Natural LanguageThe Concept of Generalized-Constraint-based Computation L.A. Zadeh -- Learning Techniques in Service Robotic Environment z.z. Bien, H.E. Lee, S. W Lee, and K.H. Park -- 1. Introduction -- 2. Human-Robot Interaction in Service Robotic Environment -- 3. Learning Techniques for Service Robotic Environment -- 4. Case Studies -- 5. Concluding Remarks -- Acknowledgment -- References -- Foundations of Many-Valued Reasoning D. Mundici -- References -- Integrated Operations in Arctic Environments F. 0wre -- Can the Semantic Web be Designed without Using Fuzzy Logic? E. Sanchez -- References -- The Role of Soft Computing in Applied Sciences P.P. Wang -- PART 1: FOUNDATIONS AND RECENT DEVELOPMENTS -- A Functional Tool for Fuzzy First Order Logic Evaluation V. Lopez, J.M Cleva, and J. Montero -- 1. Introduction -- 2. Software specification -- 3. Evaluating Fuzzy FOL formulae -- 4. Example -- 5. Conclusions and future work -- Acknowledgments -- References -- Field Theory and Computing with Words G. Resconi and M Nikravesh -- 1. Introduction -- 2. Representation of the space of the fields inside a reference space -- 2.1 Example of the basic field and sources -- 2.2 Computation of the sources -- 3. Field theory, concepts and Web search -- Reference -- New Operators for Context Adaptation of Mamdani Fuzzy Systems A. Botta, B. Lazzerini, and F. Marcelloni -- 1. Introduction -- 2. Non-Linear Scaling Function for Fuzzy Domains -- 3. Fuzzy Modifiers -- 3.1. Coverage-Level Modifier -- 3.2. Core-Position Modifier -- 3.3. Generalized Positively Modifier -- 3.4. Generalized Enough Modifier -- 4. The Genetic Algorithm -- 5. Example: Structure of Wages.

6. Conclusion -- References -- Using Parametric Functions to Solve Systems of Linear Fuzzy Equations - An Improved Algorithm A. Vroman, G. Deschrijver, and E.E. Kerre -- 1. Introduction -- 2. Preliminaries -- 3. Solving systems of linear fuzzy equations -- 3.1. Systems with one fuzzy coefficient -- 3.2. Systems with two fuzzy coefficients -- 3.3. Systems with more than two fuzzy coefficients -- 4. Conclusion -- Acknowledgment -- References -- Numerical Implementation Strategies of the Fuzzy Finite Element Method for Application in Structural Dynamics D. Moens and D. Vandepitte -- 1. Introduction -- 2. The Fuzzy Finite Element Method -- 3. General implementation schemes for IFE analysis -- 3.1. The interval arithmetic approach -- 3.2. The global optimisation approach -- 3.3. The vertex analysis -- 4. IFE implementation strategies for structural dynamic analysis -- 4.1. Eigenvalue analysis -- 4.2. Frequency response analysis -- 5. Conclusion -- References -- Environmental/Economic Dispatch Using Genetic Algorithm and Fuzzy Number Ranking Method G. Zhang, G. Zhang, 1. Lu, and H. Lu -- 1. Introduction -- 2. Fuzzy Dynamic Environmental Economic Load Dispatch Model -- 3. Weighting Ideal Point Method and Hybrid Genetic Algorithm -- 3.1 Weighing Ideal Point Method -- 3.2 Quasi-Simplex Techniques -- 4. Experiment Results -- 4.1. Objective Function -- 4.2 Test Data -- 4.3 Test Results -- 5. Conclusions -- References -- Minimizing the Number of Affected Concepts in Handling Inconsistent Knowledge E. Gregoire -- 1. Introduction -- 2. Semantic-oriented approaches -- 3. A refined semantic-based approach -- 4. Example -- S. Conclusions -- References -- A Knowledge Management based Fuzzy Model for Intelligent Information Disposal X Liang, Z. Zhang, D. Zhu, and B. Tang -- 1. Introduction -- 2. Human's thinking activity processes -- 2.1. Judgment thinking process.

2.2. Decision thinking process -- 3. The fuzzy model base of intelligent information disposal -- 3.1. Fuzzy logic inference Model of abstract thinking -- 3.2. Fuzzy pattern recognition model o/imagination thinking -- 3.3. Fuzzy state equation model of intuitive thinking -- 4. Conclusions -- References -- A Semantical Assistant Method for Grammar Parsing Y Wang, G. Gan, Z. Wu, and F. Li -- 1. Introduction -- 2. The ideal of semantic assistant for grammar parsing -- 3. Knowledge representation for the semantic of phrase -- 3.1. Scenarized knowledge representation (SKR) -- 4. Checking the weak-consistency of the semantic knowledge of phrase -- 5. Experiment -- 6. Conclusion -- References -- Lukasiewicz Algebra Model of Linguistic Values of Truth and Their Reasoning L. Yi, Z. Pei, and Y Xu -- 1. Introduction -- 2. Ordering structure in domain of linguistic "'!ruth" -- 3. Lukasiewicz algebra model of (T', ~f) -- 4. Lukasiewicz algebra model of extended linguistic domain -- 5. Reasoning by directly handling linguistic values of Truth -- 6. Conclusion -- Acknowledgments -- References -- Propositional Logic L6P(X) based on Six Linguistic Term Lattice Implication Algebra W. Wang, Y Xu, and L. Zou -- 1. Introduction -- 2. The properties of L6 and L6P(X) -- 3. Generalized literals of L6P(X) -- 4. Conclusions -- References -- Weighting Qualitative Fuzzy First-Order Logic and its Resolution Method L. Zou, B. Li, W. Wang, and Y. Xu -- 1. Introduction -- 2. Qualitative fuzzy logic system -- 3. A resolution method -- 4. Conclusions -- References -- Annihilator and Alpha-Subset X Q. Long, Y Xu, and L.z. Yi -- 1. Introduction -- 2. Preliminaries -- 3. Annihilators -- 4. a - subsets -- 5. Conclusion -- Acknowledgement -- References -- Multi-Fold Fuzzy Implicative Filter of Residuated Lattice Implication Algebras H. Zhu, 1. Zhao, Y. Xu, and L. Yi -- 1. Introduction.

2. Preliminaries -- 3. Multi-fold fuzzy implicative filter -- References -- PD-Algebras Y. Liu and Y. Xu -- 1. pseudoeffect algebras and pseudo-difference posets -- 2. Axiom systems of pseudo-difference posets -- 3. P D-algebras -- References -- Li-Yorke Chaos in a Spatiotemporal Chaotic System P. Li, Z.Li, WA. Haiang, and G. Chen -- 1. Introduction -- 2. Li-Yorke chaos and Marotto theorem -- 3. Li-Yorke Chaos in CML -- 4. Simulation -- 5. Conclusions -- 6. Acknowledge -- References -- On the Probability and Random Variables on IF Events B. Riecan -- 1. Introduction -- 2. Probability -- 3. Observable -- 4. Conclusion -- References -- Another Approach to Test the Reliability of a Model for Calculating Fuzzy Probabilities C. Huang and D. Jia -- 1. Introduction -- 2. Basic Terminologies -- 2.1. Uncertainty, probability and possibility -- 2.2. Fuzzy probability -- 2.3. Possibility-probability distribution -- 2.4. Histogram estimate -- 3. Interior-Outer-Set Model -- 4. Description of the New Approach -- 5. A Numerical Simulation Experiment -- Acknowledgment -- References -- A Novel Gaussian Processes Model for Regression and Prediction Y Zhou, T Zhang, and Z. Lu -- 1. Introduction -- 2. A review on GP model -- 3. Proposed MGP model -- 4. Experiments -- 4.1. One dimensional toy example -- 4.2. Two dimensional toy example -- 4.3. Real-word prediction problem -- 5. Conclusions -- References -- On PCA Error of Subject Classification L.H. Feng, F.s. Hu, and L. Wan -- 1. Introduction -- 2. peA Theory and Method -- 3. Error Discussion of PCA Classification -- 3.1. The Discrimination Ability of peA is Limited -- 3.2. For Those Samples with Big Variables, PCA Losses its Ability 0/ Discrimination -- 3.3. When the Value o/Variable Increases, on the Contrary, Class Level Decreases -- 3.4. The Same Samples, while Different Classifications.

3.5. Variables Change a Lot, while Classification Keeps Unchanged -- 3.6. While Variables Change Arbitrarily, There Are Only Two Different Classifications -- 3.7. The Position Change of Variables Causes the Change of Classification -- 3.8. The Change ofa Variable Causes the Change of the Classification -- 4. Conclusion -- References -- Optimized Algorithm of Discovering Functional Dependencies with Degrees of Satisfaction Q. Wei and G. Chen -- 1. Introduction -- 2. Preliminaries -- 3. Optimized Sub-Algorithm of Computing the Degree of Satisfaction -- 4. (FDs)d Inference Rules -- 5. Optimized MFDD Algorithm -- 6. A Small Example -- 7. Concluding Remarks -- References -- From Analogy Reasoning to Instances based Learning W Pan and T Li -- 1. Introduction -- 2. The Representation of Structures -- 3. Structures mapping in Analogy Reasoning -- 4. Classification on Real-valued Data by Local Structure Mapping -- 4.1. Selecting the Structure for Training Data -- 4.2. Determining the Local Structures for an Instance Related to Training Data -- 4.3. Approximating New Instances' Target Values Based on Their Local Structures -- 4.4. Experiment Study -- 5. Conclusion -- References -- A Kind of Weak Ratio Rules for Forecasting Upper Bound Q. Wei, B. Jiang, K. Wu, and W Wang -- 1. Introduction -- 2. Problem Statement -- 3. Mining Algorithm -- 4. Uncertainty reasoning -- 5. Application -- 6. Conclusion -- References -- Combining Validity Indexes and Multi-Objective Optimization based Clustering T dzyer and R. Alhajj -- 1. Introduction -- 2. The Clustering Process -- 2.1. Finding Alternative Solutions -- 2.2. Deciding on Number of Clusters -- 2.3. Applying CURE for Actual clustering -- 3. Experiments and Results -- 4. Conclusions -- References.

A Method for Reducing Linguistic Terms in Sensory Evaluation Using Principle of Rough Set Theory X Liu, X Zeng, L. Koehl, and Y Xu.
Abstract:
FLINS, originally an acronym for Fuzzy Logic and Intelligent Technologies in Nuclear Science, is now extended to Applied Artificial Intelligence for Applied Research. The contributions to the seventh in the series of FLINS conferences contained in this volume cover state-of-the-art research and development in applied artificial intelligence for applied research in general and for power/nuclear engineering in particular. Contents: Learning Techniques in Service Robotic Environment (Z Z Bien et al.); The Role of Soft Computing in Applied Sciences (P P Wang); New Operators for Context Adaptation of Mamdani Fuzzy Systems (A Botta et al.); Lukasiewicz Algebra Model of Linguistic Values of Truth and Their Reasoning (L Yi et al.); Annihilator and Alpha-Subset (X Q Long et al.); On PCA Error of Subject Classification (L H Feng et al.); Knowledge Discovery for Customer Classification on the Principle of Maximum Profit (C Zeng et al.); Fuzzy Multi-Objective Interactive Goal Programming Approach to Aggregate Production Planning (T Ertay); Analysing Success Criteria for ICT Projects (K Milis & K Vanhoof); Prioritization of Relational Capital Measurement Indicators Using Fuzzy AHP (A Beskese & F T Bozbura); Risk Analysis and Management of Urban Rainstorm Water Logging in Tianjin (S Han et al.); Obstacle Avoidance Learning for Biomimetic Robot Fish (Z Shen et al.); Urban Signal Control Using Intelligent Agents (M A Alipour & S Jalili); Parallel Evolutionary Methods Applied to a PWR Core Reload Pattern Optimization (R Schirru et al.); and other papers. Readership: Graduate students, researchers and industrialists in AI, applied mathematics, computer science and engineering, electrical & electronic engineering, and nuclear/power engineering.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: