Cover image for Biomechanical Systems Technology (A 4-Volume Set) : (1) Computational Methods.
Biomechanical Systems Technology (A 4-Volume Set) : (1) Computational Methods.
Title:
Biomechanical Systems Technology (A 4-Volume Set) : (1) Computational Methods.
Author:
Leondes, Cornelius T.
ISBN:
9789812770042
Personal Author:
Physical Description:
1 online resource (328 pages)
Contents:
CONTENTS -- Preface -- Chapter 1 Deformable Image Registration for Radiation Therapy Planning: Algorithms and Applications M. R. Kaus and K. K. Brock -- 1. Introduction -- 2. Algorithmic Components of Deformable Image Registration Techniques -- 2.1. Similarity measures -- 2.1.1. Intensity-based similarity measures -- 2.1.2. Contour-based measures -- 2.2. Deformation models -- 2.2.1. Parametric transformations -- 2.2.1.1. B-splines -- 2.2.1.2. Radial basis functions -- 2.2.1.3. Thin-plate splines (TPS) -- 2.2.1.4. Wendland functions -- 2.2.1.5. Elastic body splines (EBS) -- 2.2.1.6. Irregular grids -- 2.2.2. Non-parametric transformations -- 2.2.2.1. Linear elastic -- 2.2.2.2. Viscoelastic -- 2.2.2.3. Hyperelastic -- 2.2.2.4. Navier-Stokes equation -- 2.2.2.5. Viscous fluid -- 2.2.2.6. Diffusion or Demon's algorithm -- 2.2.2.7. Solving -- 2.2.2.8. Finite element -- 2.2.2.9. Finite difference -- 3. Applications -- 3.1. Head and Neck -- 3.2. Thorax and upper abdomen -- 3.3. Pelvis -- 3.3.1. Measurement of organ motion -- 3.3.2. Application of deformable registration -- 3.3.2.1. Quantification of organ motion and dose tracking -- 3.3.2.2. Image fusion -- 4. Conclusions and Outlook -- Acknowledgments -- References -- Chapter 2 Image-based Computational Hemodynamics Methods and their Application for the Analysis of Blood Flow Past Endovascular Devices J. R. Cebral, R. Löhner, S. Appanaboyina and C. M. Putman -- 1. Introduction -- 1.1. Cerebral aneurysms and their treatment -- 1.2. Patient-specific hemodynamics -- 2. Image-based Computational Hemodynamics Models -- 2.1. Anatomical modeling: image processing -- 2.2. Anatomical modeling: geometric modeling -- 2.3. Anatomical modeling: grid generation -- 2.4. Flow modeling: computational fluid dynamics -- 2.4.1. Spatial discretization -- 2.4.2. The advection operator -- 2.4.3. The divergence operator.

2.4.4. Temporal discretization: projection schemes -- 2.4.5. Temporal discretization: implicit schemes -- 2.4.6. Implicit treatment of the advection terms -- 2.4.7. Blood viscosity -- 2.4.8. Boundary conditions -- 2.5. Flow modeling: post processing -- 2.6. Flow modeling: visualization -- 3. Hemodynamics Simulations and Endovascular Devices -- 3.1. Embedded grid techniques -- 3.1.1. Kinetic treatment of embedded objects -- 3.1.2. Kinematic treatment of embedded surfaces -- 3.1.3. Determination of crossed edges -- 3.1.4. First order treatment -- 3.1.5. Higher order treatment -- 3.1.6. Deactivation of interior regions -- 3.1.7. Extrapolation of the solution -- 3.1.8. Adaptive mesh refinement -- 3.1.9. Direct link to particles -- 4. Numerical Examples -- 4.1. Flow past a circular cylinder -- 4.2. Idealized aneurysm stenting model -- 4.3. Idealized model of stented perforating artery -- 4.4. Patient specific aneurysm stenting model -- 4.5. Models of aneurysm coiling -- 5. Conclusions -- Acknowledgments -- References -- Chapter 3 On Modeling Soft Biological Tissues with the Natural Element Method M. Doblaré, B. Calvo, M. A. Martı́nez, E. Pe˜na, A. Pérez del Palomar and J. F. Rodrı́guez -- 1. Introduction -- 2. Mechanical Behavior of Biological Soft Tissues -- 3. The Natural Element Implementation -- 3.1. Natural neighbor interpolation -- 3.2. Computation of the natural neighbor shape functions -- 3.3. Natural element formulation -- 4. Examples -- 4.1. Biomechanical modeling of human cornea -- 4.2. Temporomandibular disc -- 4.3. Passive modeling of heart -- 4.4. Human knee ligaments -- 5. Conclusions -- Acknowledgments -- References -- Chapter 4 Techniques in Computer-Aided Diagnosis and their Application in Clinical Investigation of Bronchial Systems C. I. Fetita, A. Saragaglia, M. Thiriet, F. Prˆeteux and P. A. Grenier -- 1. Introduction.

2. MDCT Scanning Protocol -- 3. Physiopathology of the Airways -- 4. Basic CAD Techniques Relying on MDCT Data Visualization and Rendering -- 4.1. Cross-section data imaging -- 4.2. Volume rendering: a projective approach -- 4.2.1. Minimum and maximum intensity projection (mIP/MIP) -- 4.2.2. Composite rendering -- 5. Advanced CAD Techniques Based on MDCT Data Segmentation and Interaction -- 5.1. 3D segmentation of the airways -- 5.1.1. Global investigation of the bronchial tree -- 5.2. Axis-based description for morphometric analysis, interaction and navigation -- 5.2.1. Axis computation of the tracheobronchial tree -- 5.2.2. Morphometric analysis -- 5.2.3. Interaction and navigation facilities -- 5.2.4. Assessment of airway reactivity and bronchial wall remodeling -- 5.3. Patient-specific model synthesis for data exchange and functional investigation -- 5.3.1. 3D mesh modeling of the tracheobronchial tree -- 5.3.2. Airflow simulation in proximal airways -- 5.3.3. New trends in airway wall quantification: a volumetric approach -- 6. Conclusion -- Acknowledgment -- References -- Authors Contact Information -- Chapter 5 Computational Approach to Left Ventricular Flow for Developing Clinical Applications M. Nakamura, S. Wada and T. Yamaguchi -- 1. Introduction -- 2. Anatomy and Physiology of the Heart -- 3. Left Ventricular Diastolic Function and its Clinical Assessment Using Color M-mode Doppler Echocardiography -- 4. Fluid Mechanics of Intraventricular Blood Flow -- 5. Advancing Clinical Diagnosis Using Computational Biomechanics -- 6. Toward Clinically Applying the Computational Modeling of Intraventricular Flow -- 6.1. Modeling left ventricular flow -- 6.1.1. Modeling the left ventricle -- 6.1.2. Modeling the mitral and aortic valve orifices -- 6.1.3. Analysis of blood flow.

6.2. Analysis of left ventricular diastolic flow and its relation to the pattern of a CMD echocardiogram -- 6.3. Influence of the mitral valve orifice opening mode on intraventricular diastolic flow -- 7. Conclusions -- Acknowledgment -- References -- Chapter 6 The Biomedical Applications of Computed Tomography H. S. Tuan and D. W. Hutmacher -- 1. Introduction -- 2. Basics of CT -- 3. Radiation Dosage -- 4. Contrast Reagents -- 5. Clinical CT -- 5.1. Clinical CT equipment -- 5.2. Clinical imaging: circulatory system -- 5.3. Clinical imaging: respiratory system -- 5.4. Clinical imaging: gastroinstinal tract -- 5.5. Clinical imaging: tumor detection -- 5.6. Clinical imaging: urography -- 5.7. Clinical imaging: emergency and trauma -- 5.8. Surgical planning -- 5.9. Prosthetic and implant design -- 6. Micro CT -- 6.1. The differences between micro CT and clinical CT -- 6.2. Micro CT imaging: bone research -- 6.3. Micro CT imaging: vasculature studies -- 6.4. Micro CT imaging: scaffold characterization -- 6.5. Micro CT imaging: tissue engineering -- 6.6. Micro CT imaging: soft tissue analysis -- 6.7. Micro CT imaging: In vivo imaging -- 6.8. Micro CT imaging: finite element modeling (FEM) -- 7. Future Development in Clinical and Micro CT -- 8. Conclusion -- References -- Chapter 7 Methods in Combined Compression and Elongation of Liver Tissue and their Application in Surgical Simulation I. Sakuma and C. Chui -- 1. Introduction -- 2. Measurement of Liver Tissue Elasticity -- 2.1. Preparation of tissue sample -- 2.2. Experimental setup -- 2.3. Uniaxial loading tests -- 3. Characteristics of Liver Tissue -- 3.1. Stress-strain relationship -- 3.2. Nonhomogeneity -- 3.3. Effects of temperature -- 3.4. Strain rate dependency -- 3.5. Incompressibility and Poisson's ratio -- 3.6. Anisotropy -- 4. Strength and Elastic Modulus of Liver Tissues.

5. Mathematical Description of Liver Tissue Elasticity -- 5.1. Empirical expressions -- 5.2. Strain energy functions -- 5.3. Image based inverse finite element parameter estimation -- 5.4. Multi-linear constitutive equation -- 5.4.1. Equivalent stress and strain for multi-axial state -- 6. Finite Element Simulation of Soft Tissue Deformation -- 7. Concluding Remarks -- 7.1. Methods of experiment -- 7.2. Viscoelastic properties of liver tissue and constitutive modeling -- 7.3. Hepatic blood flow and biphasic poroelastic constitutive modeling -- 7.4. Biomechanics of hepatic vessel -- Acknowledgments -- References -- Chapter 8 Ultrasound Measurement of Swelling Behaviors of Articular Cartilage In Situ Q. Wang and Y.-P. Zheng -- 1. Introduction -- 1.1. Articular cartilage -- 1.1.1. Negative charged proteoglycan-collagen matrix -- 1.1.2. Layered structure and mechanical properties -- 1.1.2.1. Surface layer (or superficial zone) -- 1.1.2.2. Middle layer (or transitional zone) -- 1.1.2.3. Deep layer (or radial zone) -- 1.1.3. Inhomogeneity and anisotropy of mechanical properties -- 1.2. Swelling behavior of articular cartilage -- 1.2.1. Origin of swelling -- 1.2.2. Osmosis-induced swelling behavior -- 2. Methods -- 2.1. Specimen preparation -- 2.2. Ultrasound swelling measurement system (USMS) -- 2.2.1. Manually-controlled 3D ultrasound system -- 2.2.2. Motor-controlled 3D ultrasound system -- 2.3. Experiment protocols of swelling behavior -- 2.3.1. Dimension-dependence of swelling behavior -- 2.3.2. In situ measurement compared with ex situ measurement -- 2.3.3. Shrinkage-swelling test -- 2.3.4. Monitoring swelling behavior using ultrasound elastomicroscopy -- 2.4. Data analysis -- 3. Results and Discussions -- 3.1. Transient swelling strain -- 3.2. Transient changes in ultrasound speed -- 3.3. Effect of specimen dimension on swelling measurement.

3.4. Differences between in situ and ex situ measurements.
Abstract:
Because of rapid developments in computer technology and computational techniques, advances in a wide spectrum of technologies, coupled with cross-disciplinary pursuits between technology and its application to human body processes, the field of biomechanics continues to evolve. Many areas of significant progress include dynamics of musculoskeletal systems, mechanics of hard and soft tissues, mechanics of bone remodeling, mechanics of blood and air flow, flow-prosthesis interfaces, mechanics of impact, dynamics of man-machine interaction, and more. Thus, the great breadth and significance of the field in the international scene require a well integrated set of volumes to provide a complete coverage of the exciting subject of biomechanical systems technology. World-renowned contributors tackle the latest technologies in an in-depth and readable manner. -->. Sample Chapter(s). Chapter 1: Deformable Image Registration for Radiation Therapy Planning: Algorithms and Applications (563k). Contents: On Modeling Soft Biological Tissues with the Natural Element Method (M Doblaré; et al.); The Biomedical Applications of Computed Tomography (H S Tuan & D W Hutmacher); Non-linear Analysis of the Respiratory Pattern (P Caminal et al.); and many other papers. Readership: Academics, researchers and postgraduate students in anatomy, cardiology, orthopaedic, biomechanics and surgery.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: